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Suppose you woke up this morning and found

(x+ y) + z = x+ (y + z) had transformed into (x+ y) + z ∼= x+ (y + z).

Just one of many sensible consequences is

w + ((x+ y) + z) ∼= w + (x+ (y + z)).(†)

Computing these necessary equivalences, then equivalences between those equivalences, and so on,
quickly becomes tiresome. This is where operadic structures such as operads and props step in. They
readily serve as bookkeeping devices for higher homotopies such as †, and have found use in areas such
as algebraic geometry, deformation theory, graph complexes, mathematical physics, and topology.

My research interests lie in the study of (∞ or homotopy) operadic structures and their algebras.
I have a taste for the discrete, and I am drawn to techniques, models and algebras of a more combina-
torial flavour, such as those using graphs or polytopes. I’m particularly interested in general machinery
for producing and studying higher structures, such as Groebner bases, Koszul duality and homotopy
coherent nerves. Individually powerful, they collectively provide a factory for, the production of ho-
motopy operadic structures, and their translation between the algebraic and topological worlds.

1. Recent Results

1.1. Koszul Operads Governing Props, and Wheeled Props [Sto23]. Operadic structures use
families of graphs to model the composition of functions. For instance, operads use trees to model
functions with multiple inputs and a single output. Specific operads, such as the associative operad
As (row one of Table 1), admit presentations in terms of generators and relations. Algebras over As
are associative algebras, as the sole binary generator ∧ is concretely realised as a binary operation
µ : V ⊗ V → V , and the relation forces µ to be associative,

µ(µ(x, y), z) = µ(x, µ(y, z)).

Two more complicated operadic structures, props and properads, use directed and respectively con-
nected graphs, to model the composition of functions with multiple inputs and multiple outputs. Many
familiar algebraic structures are algebras over prop(erads), such as bialgebras, Lie bialgebras and Hopf
algebras (Table 1). Note, every operad is a properad, and every properad is a prop, but the converse
need not hold. For instance, a Hopf algebra is not an algebra over a properad, as disconnected graphs
are needed to model the antipodal relations (r4 and r5 of Table 1).
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Table 1. Examples of Operadic Structures and their Algebras.
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There exists operads whose algebras are other operadic structures, such as the operad governing props.
These operads are surprisingly useful; as if the operad is Koszul, then one can infer homotopical results
about the operadic structure it governs (see for instance Corollary 4). Many operadic structures have
been studied through their governing operad, and the most general existing result was the following.

Theorem 0 ([BM23], [KW23]).The operads governing connected operadic structures are Koszul.

However, props and wheeled props, two ubiquitous disconnected operadic structures, were not covered
by Theorem 0. The paper [Sto23] addresses this gap in literature with three main findings.

Theorem 1 ([Sto23]). The operads governing props and wheeled props are Koszul.

Secondly, we reveal that the prior polytope based techniques of [BM23] and [KW23] could not have
been used to obtain this result, via constructing explicit obstructions.

Theorem 2 ([Sto23]). There exist sub-complexes of the minimal models of the operads governing props
and wheeled props which are not isomorphic, as lattices, to the face poset of convex polytopes.

Finally, as their methods were not sufficient to prove the desired result, we were forced to develop a
more general toolkit. We extended the technique of Groebner bases for operads ([DK10], [KK22]) to
groupoid coloured operads, with the following.

Theorem 3 ([Sto23]). Let P be a groupoid coloured operad such that the associated coloured shuffle
operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

This powerful tool lets us prove that an operad has the complicated homological property of being
Koszul, by proving there exists a conceptually simpler, confluent terminating rewrite system (see
Fig. 1). Thus, we can apply this technique to not only prove Theorem 1, but also to recover Theorem 0.
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Figure 1. Proving that the operad governing props P is Koszul using Theorem 3 amounts to showing
that every labelled directed acyclic graph has a unique minimal nesting, and every other nesting can
be rewritten into it using quadratic relations. Here is one such minimal nesting, and two successive
rewrites to it, where the relation corresponding to each rewrite is displayed above the arrow.

Theorem 1 and the Koszul machine provides several immediate consequences. We obtain explicit min-
imal models for operads governing props and wheeled props. Algebras over these minimal models are
∞-props, and∞-wheeled props. Furthermore, we can apply the technique of homotopy transfer theory
to any homotopy retract of a (wheeled) prop. In particular, as the homology of a (wheeled)-prop is
an example of a homotopy retract, we may transfer to it the structure of an ∞-(wheeled) prop. These
higher operations present in the homology are known as Massey products, and it is straightforward to
show, in characteristic 0, that a (wheeled) prop is formal if, and only if, it has no Massey products.

This non-trivial characterisation of formality casts new light on old results. In [ML65], Mac Lane
provided an early calculation demonstrating that the prop governing (co)commutative Hopf algebras
(the commutative and cocommutative variant of Table 1) has Massey products. Thus, we can now
draw the following conclusion from Theorem 1.

Corollary 4 ([Sto23]). The prop governing (co)commutative Hopf algebras is non-formal.
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1.2. Cellular Diagonals of the Permutahedra [DOLAPS23].
A cellular diagonal of a polytope P is a cellular approximation of

the thin diagonal, △ : P → P × P
x 7→ (x, x).
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A projection of Perm(4) in R3.

The permutahedra Perm(n) is the convex hull of all permutations in
the nth symmetric group, considered as coordinates in Rn.

Why study cellular diagonals of the permutahedra?

The tensor product of two associative algebras is an associative al-
gebra. More generally, the tensor product of two A∞-algebras is an
A∞-algebra, i.e. the same statement is true when associativity is
relaxed up to coherent homotopy. Cellular diagonals of the permu-
tahedra let us construct these higher tensor products ([LA22]), and
characterise them (Theorem 7). Furthermore, cellular diagonals are
combinatorially interesting in their own right, particularly the per-
mutahedra, as it does not satisfy the magical formula of [MTTV21].

Jointly with Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi and Vincent Pilaud, we sought to
answer two related questions.

(1) Can we provide a complete enumeration of the faces of cellular diagonals of the permutahedra?
(2) What is the relation between the LA diagonal of [LA22] and the SU diagonal of [SU04]?

The diagonal of Perm(n) is dual to two (generically translated) copies of the braid arrangement. Thus
(1) was solved as a specialisation of the generating function for ℓ copies of the braid arrangement Bℓn.
Theorem 5 ([DOLAPS23]). The Möbius polynomial of the (ℓ, n)-braid arrangement Bℓn is given by

µBℓ
n
(x, y) = xn−1−ℓnyn−1−ℓn

∑
F≤G

∏
i∈[ℓ]

x#Fiy#Gi

∏
p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)! ,

where F ≤ G ranges over all intervals of the (ℓ, n)-partition forest poset, and Fi[p] denotes the restric-
tion of the partition Fi to the part p of Gi.
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Figure 4. The faces of a diagonal of Perm(3) and
their corresponding ordered bipartite forests.

Other specialisations provided formulae for the
number of regions and bounded regions in terms
of the Fuss-Catalan numbers, or had alternate
combinatorial interpretations.

Theorem 6 ([DOLAPS23]). The faces of the
cellular diagonals of Perm(n) are in bijection with
ordered bipartite forests.

There are the 2(n+1)n−2 outer faces in bijection
with bipartite trees (the 8 outer faces of Fig. 4).
Theorem 6 revealed that the LA and SU diago-
nals are the only coherent diagonals of Perm(n).
Moreover, their cellular images are isomorphic as
posets. This induces consequences in homotopi-
cal algebra such as the following.

Theorem 7 ([DOLAPS23]). There are exactly
two geometric universal tensor products of:

• A∞-algebras,
• A∞-morphisms, and
• homotopy operads.

In each case, both tensor products are ∞-isotopic.
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2. Current and Future Projects

2.1. Homotopy G-Operadic Structures. From Theorems 0 and 1, we now know that the operads
governing all (mainstream) symmetric-operadic structures are Koszul. This brings into sights a useful
extension, G-operadic structures. Informally, G-operadic structures model the composition of functions
whose inputs and outputs are connected by some G-action. For instance, if G is the symmetric group,
we obtain the symmetric operadic structures discussed in Section 1.1. Alternatively, if G is something
more exotic like the braid group, then we can visualise the inputs and outputs of our braided-operadic
structures as being connected by braided wires. Structures such as braided-props, otherwise known as
probs, have drawn recent interest in the work of Kapranov on perverse sheaves [KS21].

A key technical insight used to prove that the operads governing symmetric-operadic structures were
Koszul, is that one can obtain a quadratic presentation of these operads by hiding certain (equivari-
ance) axioms in a groupoid colouring. This insight also applies to G-operadic structures. Thus, we
may construct a quadratic groupoid coloured operad P governing each G-operadic structure. To prove
P is Koszul, we would like to apply Theorem 3. While it is straightforward to show that the associ-
ated coloured shuffle operad (P f )∗ admits a quadratic Groebner basis, this currently only implies P
is Koszul when its groupoid has finite automorphisms. Thus, two possible paths are being considered.

• We directly extend the theory to groupoids with infinite automorphisms.
• We switch to using non-homogenous coloured operads (quadratic and unary relations). With
existing theory, it is straightforward to show these more complicated presentations are Koszul.

2.2. The Homotopy Coherent Nerves of (Wheeled) Props. This joint project with Philip Hack-
ney and Marcy Robertson aims to build a bridge between algebraic and topological notions of ∞-
operadic structures. An ∞-operad, is an operad whose operations are only defined up to coherent
homotopy. There are many models of ∞-operads in literature such as: the algebraic model given by
the Koszul machine shOperad; the dendroidal/graphical model dSet; the simplicial model sOperad;
and the topological model dSpace. Furthermore, the relations between these models of ∞-operads are
well understood through various homotopy coherent nerves.

This project aims to subsume these known models of ∞-operads (and ∞-categories), and nerves
at the level of∞-(wheeled) props. In illustration, the topmost nerves of Figure 5 subsume (via a sieve)
all the lower nerves, and a similar statement holds for the wheeled variants.

shProp SetΓ
op

sProp

shProperad SetΓ
op
c sProperad

shOperad dSet sOperad

A∞-Cat sSet sCat

SetΓ
op

Γ-Space

SetΓ
op
c Γc-Space

dSet dSpace

sSet sSpace

Figure 5. Various models of ∞-operadic structures, with inclusions and nerves between them. The
known nerves are indicated by solid lines, and the new nerves by dotted.

At the level of operads and categories, the existing nerves are known to be Quillen equivalences. This
is no longer generally true for the more complicated graphical categories of (wheeled)-prop(erads).
Thus, the central goal of the project is,

Characterise when these new nerves are Quillen equivalences via an obstruction theory.

We already have one characterisation through the Σ-cofibrancy of the operads governing these different
structures. Thus, applying and reinterpreting this graphically will yield the desired obstruction theory.
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2.3. Koszul Duality for Props. There is still no known Koszul duality theory for props. However,
given we now know that the operad P governing props is Koszul (Theorem 1), this opens a path to
studying the Koszul duality of algebras over P, i.e. props. In [Mil12], a Kosuzl duality theory for
algebras over a Koszul (non-groupoid coloured) operad was introduced. To clarify their theory by
example, the operad As, whose algebras are associative algebras, is known to be Koszul, and their
construction recovers the classical notion of Koszul duality for associative algebras.

Similarly to Section 2.1, there are two possible paths for applying Millès’ theory to props. One can
either seek to extend existing theory to the groupoid coloured case, or one can work entirely within
the known, using more complicated non-homogeneous quadratic coloured presentations. The second
path is certainly viable, and is currently being employed by [DV21], in the pursuit of a Koszul duality
theory for symmetric operads, where the symmetry is also relaxed up to coherent homotopy.

2.4. Tensor Products for Homotopy Properads. Homotopy props do not admit a minimal model
governed by polytopes (Theorem 2), however the simpler connected case of homotopy properads do
(Theorem 0). In particular, the appropriate minimal model for the operad governing properads is
given by the poset associahedra of [Gal21], which has been realised as a convex polytope in [MPP23]
and [Sac23]. Why is this interesting? Well, in [LA22], explicit functorial tensor products of homotopy
operads were constructed from the following two results,

(1) The appropriate minimal model for homotopy operads is given by nested planar trees.
(2) This nesting model admits an explicit realisation as a convex polytope.

Thus, we have the analogous results to construct functorial tensor products of homotopy properads.
Indeed, the existence of this tensor product would follow from the following technical steps.

• Take a definition of the minimal model for the operad governing properads P∞. This can be
produced by restricting the known minimal model for the operad governing props [Sto23].
• Apply the cellular chains functor C∞

• (P∞) to produce a (non-strictly coassociative) Hopf op-
erad, whose coproduct corresponds to the diagonal.
• Mirror Theorem 4.23 of [LA22]) to show that C∞

• (P∞) ∼= P∞ as dg-symmetric operads. This
is comparable to showing the associahedron encodes the signed differential of the A∞ operad.

The diagonal of C∞
• (P∞) encodes a tensor product of homotopy properads. Thus, a chosen tensor

product can then be constructed through a choice of orientation vector, and the toolkit of [LA22].
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