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Abstract. This thesis consists of the paper ”Koszul Operads Governing Props and Wheeled Props”, and

the joint paper ”Diagonals of Permutahedra”, with Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi
and Vincent Pilaud. These bodies of work are presented alongside a cohesive background, summary, and

brief exploration of two problems in their intersection. In the intersection, we discuss feasible methods for
constructing tensors products of connected homotopy operadic structures. Secondly, we show that although

there is precisely one notion of a shuffle operad up to isomorphism, there are many possible strict notions

of shuffle operads.

The first included publication ”Koszul Operads Governing Props and Wheeled Props”, extends Groeb-

ner bases to groupoid coloured operads, to prove the operads whose algebras are props and wheeled props
are Koszul. This is accomplished by new biased definitions for (wheeled) props, and an extension of the

theory of Groebner bases for operads to apply to groupoid coloured operads. Using the Koszul machine,

we define homotopy (wheeled) props, and show they are not formed by polytope based models. Finally,
using homotopy transfer theory, we construct Massey products for (wheeled) props, show these products

characterise the formality of these structures, and re-obtain a theorem of Mac Lane on the existence of

higher homotopies of (co)commutative Hopf algebras.

The second included publication ”Diagonals of Permutahedra”, provides a systematic enumerative and
combinatorial study of geometric cellular diagonals on the permutahedra.

In the first part of the paper, we study the combinatorics of certain hyperplane arrangements obtained as

the union of ℓ generically translated copies of the classical braid arrangement. Based on Zaslavsky’s theory,
we derive enumerative results on the faces of these arrangements involving combinatorial objects named

partition forests and rainbow forests. This yields in particular nice formulas for the number of regions and

bounded regions in terms of exponentials of generating functions of Fuss-Catalan numbers. By duality, the
specialization of these results to the case ℓ = 2 gives the enumeration of any geometric diagonal of the

permutahedron.

In the second part of the paper, we study diagonals which respect the operadic structure on the family
of permutahedra. We show that there are exactly two such diagonals, which are moreover isomorphic. We

describe their facets by a simple rule on paths in partition trees, and their vertices as pattern-avoiding pairs of

permutations. We show that one of these diagonals is a topological enhancement of the Sanbeblidze–Umble
diagonal, and unravel a natural lattice structure on their sets of facets.

In the third part of the paper, we use the preceding results to show that there are precisely two isomorphic

topological cellular operadic structures on the families of operahedra and multiplihedra, and exactly two
infinity-isomorphic geometric universal tensor products of homotopy operads and A-infinity morphisms.
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0.1. Declarations. I declare that: this thesis comprises only my original work towards the Doctor of Phi-
losophy except where indicated in the preface; due acknowledgement has been made in the text to all other
material used; and the thesis is fewer than the maximum word limit in length, exclusive of tables, maps,
bibliographies and appendices.
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0.2. Preface. The abstract of this thesis contains the abstracts of both constituent publications. Chapter
1 of this thesis, contains no original content, purely providing background and a summary of the content
of this thesis. We note that most of the figures used in this chapter were taken or adapted from either the
composite papers, personal research statements, or prior talks. Chapter 2 of the thesis contains original
content unless otherwise indicated. Chapter 3 of this of thesis consists of publications submitted over the
course of my PhD. Chapter 3.1 consists of the paper ”Koszul Operads Governing Props and Wheeled Props”,
which was published by Advances in Mathematics in October 2024. The work is a natural amalgamation
of existing research until Section 4.2, namely groupoid coloured operads [War22] and Groebner bases for
operads [DK10], after which it is original research. Chapter 3.2 consists of the paper ”Cellular Diagonals of
Permutahedra”, which was submitted to Advances in Mathematics in January 2024, and is a joint project
with Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi and Vincent Pilaud. The work of this paper is
wholly original; however, it makes strong use of the techniques of Laplante-Anfossi [LA22] and Zaslavsky
[Zas75]. All authors contributed in part to all sections, however a very rough breakdown of contributions
is as follows. Part 1, exploring the combinatorics of (l, n)-braid Arrangements, was mostly contributed by
Delcroix-Oger and Pilaud, however the initial mathematics and in particular the l = 2 case was worked
on by all authors. Part 2, focusing on operadic diagonals of the permutahedra, was mostly contributed by
Laplante-Anfossi and myself, however all authors contributed, notably in Sections 4 and 5, of which the
later sections directly build on. Part 3, exploring higher algebraic consequences of preceding combinatorics,
was largely contributed by Laplante-Anfossi, with contributions including experimental mathematics from
all authors. Note, the bibliography of this thesis contains only the citations used in Sections 1-2, and each
paper of Section 3 has their own self contained bibliography. I acknowledge the support of, an Australian
Government Research Training Program (RTP) Scholarship, and the Australian Research Council Future
Fellowship FT210100256.
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1. Introduction

1.1. Background. Operadic structures and their representations/algebras use families of graphs to model
the composition of functions. Let’s consider a concrete example in the case of operads, which consist of a
sequence of sets of n-ary operations, which compose in a tree like fashion. Let (E ,⊠) be a symmetric monoidal
category, such as the category of sets with the Cartesian product (Set,×), or the category of vector spaces
over a field K with the tensor product (V ect,⊗). The most fundamental operad is the endomorphism operad.
Let X be an object of the monoidal category, a vector space or a set respectively. Then the set of n-ary
operations of the endomorphism operad EndX is defined to be HomE(X⊠n, X), i.e. the maps of sets from
X×n → X, or the linear transformations from X⊗n → X. These operations can be composed to produce
further operations. This operad is of critical importance as it lets as define the algebras of all other operads.
To see this, we introduce one further example, the non-symmetric associative operad in (Set,×)

As := F ( )/⟨ r1= ⟩ = The set of all binary planar trees modulo the relation r1.(1)

An algebra over an operad P , is then defined to be a morphism of operads A : P → EndX . Informally, A is
some kind of generalised functor which realises each abstract operation/tree of P as a concrete operation in
EndX . For instance, if X is a set then A : As → EndX is a classical monoid in X, as the binary tree with
one vertex ∧ is realised as f : X ×X → X and r1 forces f to be associative. Alternatively, if X is a vector
space and KAs is the K-linearisation of As, then A : KAs→ EndX is an associative algebra.

The descriptive power of this approach is not limited to trees. Two more complicated operadic structures,
props and properads, use directed and respectively connected graphs, to model the composition of functions
with multiple inputs and multiple outputs. The endomorphism prop(erad) EndX in (E ,⊠), is defined to
have operations with n inputs and m outputs HomE(X⊠n, X⊠m), and an algebra over a prop(erad) P is
again defined to be a morphism of prop(erads) A : P → EndX . Many familiar algebraic structures are
algebras over prop(erads), such as bialgebras, Lie bialgebras and Hopf algebras (Table 1).

Family An Example Element of Operadic Family Its Algebras in Vect
Generators Relations

Operads r1=
Associative Algebras

Properads

,
r1= ,

r2= ,
r3=

Bialgebras

Props

, ,

, ,

r1, r2, r3 and,
r4= ,

r5= ,

r6=
r6= ,

r7=
r7= ,

r8=
r8=

Hopf Algebras

Table 1. Examples of Operadic Structures and their Algebras.

Note, every operad is a properad, and every properad is a prop, but the converse need not hold. For instance,
a Hopf algebra is not an algebra over a properad, as disconnected graphs are needed to model the (co)unital
and antipodal relations of Table 1. Given their descriptive power, operadic structures and their algebras
are ubiquitous in mathematics, for instance arising naturally in the study of deformation theory [AM22],
[MV09], differential geometry [MMS09], knot theory [DHR21], [DHR23], and topology [BV06], [WW16].
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Perhaps the greatest utility of operadic structures, is how readily they extend to describe relations which
only hold up to homotopy. A classical example is that of path spaces. If X is a topological space, then
P (X) := HomTop([0, 1], X), the set of continuous functions from the interval into X equipped with the
compact-open topology, admits a multiplication µ which is only associative up to homotopy. This multi-
plication takes two different paths with the same start and end point, and composes them into a new path
which traverses each sub-path in half the total time.

µ(µ(e, f), g) =

1/4

1/4

1/2

∼=

1/2

1/4

1/4

= µ(e, µ(f, g)), where µ(p1, p2) :=

{
p1(2t), 0 ≤ t ≤ 1/2

p2(2t− 1), 1/2 ≤ t ≤ 1

There are many homotopies which continuously deform µ(µ(e, f), g) into µ(e, µ(f, g)). However, these ho-
motopies can also be continuously deformed into one another, yielding homotopies between homotopies, and
so on. Thus, we seek some method to parcel this infinite tower of intricately related higher homotopies.

The A∞ operad is a minimal model for the non-symmetric associative operad KAs (see for instance [LV12]).
It is a homotopy associative generalisation of KAs, or formally, the smallest possible cofibrant resolution of
KAs (up to isomorphism), in the model category of algebraic operads. Alternatively, A∞ is an operad in the
category of differential graded vector spaces dgV ect, endowed with a morphism of operads m : A∞ → KAs
which is both an epimorphism and a quasi-isomorphism. The operad has the explicit form,

A∞ := (F ((µn)n≥1), d), where µn is a n-ary operation also denoted µn = ... .(2)

The operation µ1 encodes a differential, µ2 = ∧ corresponds to the generator of As, for n ≥ 3 each µn

encodes homotopies via their derivation ∂(µn), and d is a differential that is also quadratic (i.e. d2 = 0 and
d restricts to d : E → F (E)(2) cutting each generator µn into a summand of two pieces). Famously, the
derivations ∂(µn) are encoded via the associahedra [Sta63]. The associahedron Kn, is a cell complex, which
can be realised as a convex polytope (the convex hull of a collection of points in Rn), and whose cells are
bijection with planar trees (see Fig. 1).

Figure 1. From left to right, the associahedra K1,K2 and K3, with their cells labelled via
the bijection to planar trees (see [Sta63] and Appendix C.2.1 of [LV12]).

The boundary operator of the outer cell of Kn yields the derivation of µn+1, e.g.

∂( ) = − , ∂( ) = + − − − .
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How do these encode homotopies? Well, if ∂(µ3) = 0 then one observes the associativity relation r1 holds
strictly (Eq. (1)). Thus, µ3 is an obstruction to strict associativity. Each successive µn is then an obstruction
to a relation in terms of µi for i < n. Indeed, the dg operad KAs is equivalent to an A∞ operad in which for
all n ≥ 3 we have that ∂(µn) = 0. Thus in general, algebras over the A∞ operad realise µ2 as a homotopy
associative map f2 : X ⊗X → X, and the higher µn as homotopies fn : X⊗n → X. The associahedra pro-
vides an intrinsically beautiful encoding of all higher homotopies, but there are additional practical reasons
to want polytope based quadratic minimal models.

Given two associative algebras A,B it is straightforward to show that their tensor product A ⊗ B is also
an associative algebra, with an explicit product defined by µ(a ⊗ b, a′ ⊗ b′) := µA(a, a

′) ⊗ µB(b, b
′). Given

two A∞ algebras A,B, one can reason via abstract nonsense that A⊗ B is an A∞-algebra, but explicating
the operations is more subtle. However, it turns out that because A∞ admits a polytope based model,
and this polytope admits a known convex realisation, any coherent cellular approximation of the diagonal
of this polytope can be used to explicitly construct these higher operations [SU04], [MS06]. Let’s briefly
unpack this. A cellular diagonal of a convex polytope P is a cellular approximation of the thin diagonal
△ : P → P × P defined by △(x) := (x, x). That is to say, a cellular diagonal is an approximation of △ up
to homotopy, which agrees on the vertices of P × P , and whose image is a union of cells of P × P .

00

01

10

11

00

01

10

11

Figure 2. The thin and a cellular diagonal of the interval [0, 1].

A cellular diagonal is said to be coherent, if for every face f of P , the restriction to f is also a cellular
diagonal. These coherent cellular diagonals induce explicit functorial tensor products of the homotopy struc-
ture(s) encoded via the polytope. In essence, the coherence condition induces the necessary coherence in
the constructed homotopies. This means that an elegant combinatorial expression for a coherent cellular
diagonal of the associahedra, such as the magical formula of [MTTV21], translates into an elegant formula
for the tensor product of A∞-algebras.

An operad P is said to be Koszul if it has a minimal model with a quadratic differential (see around
Eq. (2)). There are many other equivalent definitions. Note that by this definition, the (polytope based)
quadratic minimal model of KAs shows that it is Koszul. Proving an operad P is Koszul provides many
powerful results, including the following.

• It provides an explicit formula for a quadratic minimal model P∞, and many equivalent character-
isations of P∞-algebras (Corollary 7.4.3. and Theorem 10.1.13 of [LV12]). A key feature of these
characterisations is the phenomena of Koszul duality. For example, the operad KAs is Koszul self
dual, and the operad whose algebras are commutative algebras is Koszul dual with the operad whose
algebras are Lie algebras. Hence, an A∞-algebra is a codifferential on a cofree coassociative coal-
gebra, and a L∞-algebra, or homotopy Lie-algebra, is a codifferential on a cofree cocommutative
coalgebra (Proposition 10.1.12 of [LV12]).

• It provides access to homotopy transfer theory (Theorem 10.3.1 of [LV12]). That is to say, the
homotopy retract of any P -algebra has the explicit data of a P∞-algebra. For example, the homology
of any P -algebra is a P∞-algebra. This higher structure in the homology is known as Kaledin classes,
it subsumes the Massey products, and completely characterises the formality of the operad [Emp24].

• It provides resolution and rectification results for P -algebras (Proposition 11.4.2, and Theorems
11.4.2 and 11.4.8 of [LV12]). In particular, the homotopy category of dg P -algebras is equivalent to
the homotopy category of P∞-algebras with ∞-morphisms

Ho(P -alg) ∼= Ho(∞-P∞-alg).

Any P -algebra can be resolved into a P∞-algebra via a generalised bar-cobar resolution, and any
P∞-algebra can be rectified into a P -algebra. Applying these results to the associative operad KAs
recovers the classical bar resolution of associative algebras, and their resolution/rectification results.
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We have seen that operads with polytope based quadratic minimal models are both Koszul, and have a
feasible method for constructing explicit tensor products of their homotopy algebras. Unfortunately, there
are operads which are Koszul and which do not admit polytope based models (such as Theorem 1). Thus,
we briefly discuss an alternate method for proving an operad is Koszul. A non-symmetric quadratic operad
P is Koszul if its relations can be directed into a convergent rewrite system (see for instance [Lau24]). Let’s
unpack this. An operad P is said to be quadratic if it admits a presentation in terms of generators and
relations P = F (E)/⟨R⟩, where every relation in R is composed of terms using exactly two generators.
For instance, KAs is quadratic as the sole relation r1 has two terms each using two generators Eq. (1).
Furthermore, we can direct r1 to

r1−→

and this induces a rewrite system R on the set of binary trees, where a pair of binary trees (T1, T2) ∈ R
if T2 is the result of rewriting a subtree of T1 via r1. For instance, every directed arrow (or oriented cell)
of Fig. 1 is a rewrite in R. A rewrite system is convergent if all possible rewrites from a common starting
point terminate at the same end point. The rewrite system R on KAs is convergent, as every binary tree
can be successively rewritten into a tree with no left children. Alternatively, Bergman’s Diamond Lemma
[Ber78] implies that a terminating rewrite system is convergent if and only if it is locally convergent. Thus,
the oriented cells of K3 in Fig. 1 actually constituent a proof that KAs is Koszul.

In the case of operads, this rewriting approach was first developed in [Hof10] and [DK10]. Where it was
shown that a symmetric operad P is Koszul, if an associated non-symmetric shuffle operad P f admits a qua-
dratic Groebner bases, or equivalently P f admits a quadratic PBW bases. Here, admitting a bases amounts
to checking the convergence of a specific rewrite system as before. The map −f is a clever way of forgetting
the symmetries of an operad whilst conserving the underlying elements. More formally, one of the equivalent
characterisations of an operad P being Koszul is that the homology of its bar complex B(P ) is concentrated
in a particular degree. However, the forgetful functor −f induces an isomorphism of bar complexes (Section
1.2 of [DK13]), thus

(B(P f ) ∼= B(P )f ) ⇒ (P f is Koszul ⇐⇒ P is Koszul).

This is why we need only work with the associated non-symmetric shuffle operad P f .

1.2. Summary. Building from this background, we now informally summarise the essential ideas of the
publications present in this thesis. This section is intended to be self-contained given Section 1.1, and
complementary to each respective paper.

1.2.1. Koszul Operads Governing Props and Wheeled Props. Props, introduced in the uncoloured dgV ect
case by Adams and Mac Lane ([ML65]), are a symmetric monoidal category whose objects are generated by
a free monoid. A wheeled prop, see [MMS09], is a prop with an additional trace operation. Alternatively,
as we claimed in Section 1.1, a prop is a set of operations which compose like directed acyclic graphs. One
way to formalise this sentence is, there exists a groupoid coloured operad P whose algebras are (coloured)
props in Set. The n-ary operations of P are defined to be

P

( (
d
c

)
(
d1
c1

)
, ...
(
dn
cn

)
)

:=
The set of directed acyclic graphs with n labelled vertices, such that:

the graph has profile
(
d
c

)
(inputs c and outputs d); and the ith vertex has profile

(
di
ci

)
.

Here c, d, ci, di are sequences of colours drawn from some underlying set of colours C. These sets compose
like coloured trees (i.e. we can only perform graftings of matching colours) via graph substitution. That is
to say, if we have two graphs, in which the entire profile of the second graph matches the ith vertex of the
first graph, then we can substitute the second graph into the ith vertex. For instance,

v1

v2

◦2
v1 v2

=
v1

v2 v3
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Assuming all edges are the same colour, and using n to denote the unique sequence of length n drawn from

a singleton set, the graphs are respective elements of P
( (00)
(02),(

2
0)

)
, P
( (20)
(10),(

1
0)

)
, P
( (00)
(02),(

1
0),(

1
0)

)
. This operad P , is

groupoid coloured in the sense that we can move permutations around in an equivariant fashion. For instance
an equivalent way of forming the same graph, under an explicit action of the groupoid, is the following,

v1

v2

◦2
v1 v2

=
v1

v2 v3

In fact, the actions of the groupoid on P completely encodes the equivariance axioms of props. This is
advantageous, as P can be shown to admit a quadratic presentation P ∼= F (E)/⟨R⟩ where the quadratic
relations R consist of all non-equivariant ways of forming all graphs with three vertices, see Fig. 3 for two
such relations (or formally Section 6.2 [Sto24]). Note that trying to obtain this presentation without using
a groupoid colouring will result in a quadratic unary presentation; see [DV21] for this case for operads.

Essentially the same approach yields a quadratic groupoid coloured operad W whose algebras are wheeled
props in Set. Thus, if the linearisations of these operads P := KP and W := KW , over a K field of char-
acteristic 0, could be shown to be Koszul, then the Koszul machine would yield the many powerful results
sketched in Section 1.1.

The theory of Koszul duality was first extended to groupoid coloured operads in [War22]. In the same
paper, Ward showed that the groupoid coloured operad whose algebras are modular operads is Koszul, be-
fore using the Koszul machine to study generalised bar-cobar resolutions, and Massey products of modular
operads. Prior to [Sto24], the most general result had been obtained by two different groups of authors.

Theorem 0 ([BM23], [KW23]). The operads governing connected operadic structures

(1) are Koszul,
(2) are Koszul self-dual, and
(3) have minimal models governed by polytopes.

Although their proof methods differed, the common thread of both approaches was using polytopes to parse
the minimal models of each operad. Unfortunately, this approach is not feasible for props and wheeled props.

Theorem 1 ([Sto24]). The operads governing props and wheeled props

(1) are Koszul,
(2) are not Koszul self-dual, and
(3) do not have minimal models governed by polytopes.

Thus, the second main result of this paper, which was used to obtain Theorem 1 and can recover Theorem 0,
was extending the technique of Groebner bases for operads to groupoid coloured operads.

Theorem 2 ([Sto24]). Let P be a groupoid coloured operad such that the associated coloured shuffle operad
(P f )∗ admits a quadratic Groebner basis, then P is Koszul.

v1

v4

v2

v3

v1

v3 v2

=

v1

v3 v2

←−−−−−−−−−−−−−−−−−−−−−−−−

v1

v4

v2

v3

v1

v3

v2

=

v1

v3

v2

←−−−−−−−−−−−−−−

v1

v4

v2

v3

Figure 3. Proving that the operad governing props P is Koszul using Theorem 2 amounts to showing that
every labelled directed acyclic graph has a unique minimal nesting (encoding graph substitutions), and every
other nesting can be rewritten into it using quadratic relations. Here is one such minimal nesting, and two
successive rewrites to it, where the relation corresponding to each rewrite is displayed above the arrow.
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The proof of Theorem 2 lies in studying the forgetful functors between groupoid coloured symmetric modules
and discrete-coloured non-symmetric modules. As discussed in Section 1.1, the functor −f from symmetric
modules to non-symmetric modules, which forgets the action of the symmetric group, induces an isomorphism
of bar complexes. There is a similar forgetful functor−fV from groupoid coloured modules to discrete coloured
modules, which forgets the action of the groupoid. In this case, −fV only induces an epimorphism of bar
complexes (Section 4.2 of [Sto24]),

(B(P fV) ↠ B(P )fV) ⇒ (P fV is Koszul ⇒ P is Koszul).

However, this is sufficient to prove Theorem 2 given (P f )fV admits a computable presentation (P f )∗.

1.2.2. Cellular Diagonals of Permutahedra. This joint paper with Bérénice Delcroix-Oger, Guillaume Laplante-
Anfossi and Vincent Pilaud, sought to provide a complete combinatorial characterisation of the cellular di-
agonals of a well known polytope, the permutahedra. Aside from combinatorial interest, it was hoped that
studying these diagonals would characterise its induced tensor products of homotopy operads, A∞-algebras
and A∞-morphisms (see sketch of Section 1.1, and [LA22], [LAM23]).

The permutahedra Perm(n), is the convex hull of all permutations in the nth symmetric group, consid-
ered as coordinates in Rn. A common technique in the study of polytopes, is to study associated hyperplane
arrangements, in particular their normal fans. Informally, a hyperplane arrangementH is a set of hyperplanes
in Rd, and the normal fan of Perm(n) is the braid arrangement Bn (Definition 1.9 of [DOLAPS23]).

23|1

2|3|1

2|13

2|1|3

12|3

3|12

3|1|2

13|2

1|3|2

1|23

3|2|1

123

1|2|3

Figure 4. A projection of Perm(3) in R2 with faces labelled by ordered partitions (left),
and its normal fan, the braid arrangement B3 (right). The three hyperplanes, six regions
and sole vertex (triple intersection point) of B3 are labelled through their duality to Perm(3).

All possible unions of the regions resulting from Rd \⋃H∈H H defines what is known as the face poset, and
all possible intersections of a hyperplane arrangement H defines what is known as the flat poset.

2
1

3

2
3

1

2
1

3

2
1

3
2

1

3

Figure 5. The face poset Fa(B3) of the braid arrangement B3 where faces are represented
as cones (left); Fa(B3) where faces are represented as ordered set partitions (mid left); the
flat poset Fl(B3) of the braid arrangement B3 where flats are represented as intersections of
hyperplanes (mid right); Fl(B3) where flats are represented as set partitions (right).
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Crucially, as the normal fan of the permutahedra Perm(n) is the braid arrangement, the dual of a diagonal
of Perm(n) is a hyperplane arrangement B2n consisting of two generically translated copies of Bn (see Fig. 6).

2|13 13|2

2|13 13|2

12|312|3

23|1 23|1

1|23 1|23

3|123|12

12|3

12|3

23|1

23|1

1|23

1|23

3|12

3|12

2|13 13|2

2|13 13|2

Figure 6. The duality between the (2, 3)-braid arrangement B23 (left) and a cellular diag-
onal of the permutahedron Perm(3) (right).

By exploiting techniques of [Zas75] we obtained enumeration results for the flat and face posets of Bln, the
hyperplane arrangement consisting of l generically translated copies of Bn. Our most general enumerative
result was a Möbius polynomial ([DOLAPS23] Theorem 2.4), which simplified via alternate combinatorial
characterisations to elegant formulae for the number of vertices, regions and bounded regions of Bln.
Theorem 3. [DOLAPS23] The number of vertices of the (ℓ, n)-braid arrangement Bℓn is

f0(Bℓn) = ℓ
(
(ℓ− 1)n+ 1

)n−2
.

In particular, the outer faces of a cellular diagonal of Perm(n) are in bijection with pairs (σ, τ) of partitions of
[n] whose edge graph forms a bipartite tree. More generally, all faces are in bijection with ordered bipartite
forests, see Fig. 7. This combinatorial characterisation was the key to unifying the theory of coherent cellular
diagonals of the permutahedra. Prior to this project, there were known to be (at least) two distinct coherent
cellular diagonals of the permutahedra △SU of [SU04], and △LA of [LA22], and these were originally defined
via drastically different formulae.

Theorem 4. [DOLAPS23] Let (σ, τ) be a pair of ordered partitions of [n] whose edge graph forms a
bipartite tree. If for all pairs of adjacent blocks, the directed path between them traverses

• the maximal path element right to left, then (σ, τ) ∈ △SU.
• the minimal path element left to right, then (σ, τ) ∈ △LA.

Furthermore, △SU,△LA and their opposite orders are the only coherent cellular diagonals of permutahedra.

For example, every tree in Fig. 7 respects both the minimal and maximal path conditions (as △LA and △SU

coincide for n ≤ 3), and (σ, τ) = (({1, 2}, {3}, {4}), ({2, 4}, {1, 3})) ∈ △SU but not △LA as the path between
the adjacent blocks {3}, {4} of σ traverses the minimal path element 1 from right to left.

12

3

4

24

13

Given the disparate nature of the original formulae, Theorem 4 can be seen as a topological enhancement
of the original △SU diagonal [SU04], and a combinatorial enhancement of the original △LA diagonal [LA22].
Furthermore, the fact that △SU,△LA are the only coherent diagonals (and their cellular images have iso-
morphic posets), led to following higher algebraic consequences.

Theorem 5 ([DOLAPS23]). There are exactly two geometric universal tensor products of:

• A∞-algebras,
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• A∞-morphisms, and
• homotopy operads.

In each case, both tensor products are ∞-isotopic.
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Figure 7. The LA (and SU) diagonal of Perm(3) with faces labelled by ordered bipartite
forests.

2. Connections

This section briefly explores some natural questions at the intersection of both papers.

2.1. Tensor Products of Connected Homotopy Operadic Structures. This section has benefited
greatly from conversations with Guillaume Laplante-Anfossi. In Section 1.1, it was sketched how given an
operad P , you can construct an explicit functorial tensor product of P∞-algebras if

• P admits a polytope based minimal model P∞, and
• the polytope has a known convex realisation.

See [LA22], where the tensor product of homotopy operads is constructed via this general approach. More
generally, from Theorem 0 we know there exists polytope based minimal models for all connected operadic
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structures, including properads, wheeled properads, cyclic operads and modular operads. Thus, it is natural
to seek to use these polytopes to construct tensor products of the homotopy weakened generalisations of all
these operadic structures. There are at least two possible pathways to these extensions.

Firstly, we could study these polytopes on a case by case basis. For instance, the appropriate minimal
model for the operad governing properads is given by the poset associahedra of [Gal21], which has been
realised as a convex polytope in [MPP23] and [Sac23]. Thus as suggested in Remark 7.1.3 of [Sto24], we
could mirror the methodology of [LA22] in this particular case.

Alternatively, in [KW23] it was proven that all cubical Feynman categories are Koszul, for instance, the cu-
bical Feynman categories governing connected operadic structures are all Koszul as mentioned in Theorem 0.
It is strongly suggested by their methodology, that the associated polytopes of homotopy cubical Feynman
categories are operahedra, in particular, projections of the permutahedra (see Section 5.1 of [KW23]). If this
is indeed the case, and the projections are the natural projections from de-refinements of normal fans, then
Proposition 3.20 of [LA22] immediately yields the diagonals of these polytopes. Alternatively, if this is not
true for all cubical Feynman categories, then perhaps the prior cases of interest can be shown to have the
necessary projective properties.

It is also natural to hope for non-polytope based methods for explicitly calculating the tensor products of
homotopy operadic structures without polytope based models, such as L∞-algebras or homotopy (wheeled)
props. The author is unaware of any such general extension.

2.2. Shuffle Operads. One of the critical insights in the theory of Groebner bases for symmetric operads
is that there exists a good way to forget the symmetries of operads, which enables explicit computation
of basis elements. Namely, the forgetful functor −f from Section 1.1. Symmetric operads are monoids
in the monoidal category of symmetric modules with a monoidal composition built from symmetric trees
(ModΣ, ◦), and ’shuffle operads’ are monoids in the monoidal category of nonsymmetric modules with a
monoidal composition built from ’shuffle trees’ (Mod, ◦sh). In essence, the monoidal product ◦sh is defined
precisely so that −f : ModΣ → Mod is strong monoidal with respect to these products. This is desirable,
for instance, it yields the isomorphism of bar complexes observed in Section 1.1.

It is natural to wonder, how many choices of monoidal products exist on Mod such that f is strong monoidal?
In this section, we show there are infinitely many choices (Proposition 2.2.16), including a minimal or LA
variant which matches the classical notion of a shuffle operad ([Hof10], [DK10]), and a new maximal or SU
variant. However, all such choices are isomorphic (Proposition 2.2.15). The findings of this section lie in
contrast to Theorem 4, which observed that whilst △LA and △SU are isomorphic, they are also strictly the
only coherent cellular diagonals (see Remark 2.2.17).

Note although the theory of this section is described via groupoid coloured operads (to make use of the
definitions of [Sto24]), no groupoid actions are used, and the reader may parse these definitions as either
(discrete) coloured operads or one coloured operads.

2.2.1. Preliminary Definitions. We start by introducing several notions of shuffle trees, their corresponding
monoidal products, and their corresponding type of shuffle operad. We first recall from Definitions 4.13 and
5.2 of [DOLAPS23], that given two non-empty pairwise disjoint subsets I, J ∈ [n], that

• the LA ordering of {I, J} was defined to be (I, J) if min I < min J , and (J, I) otherwise, and
• the SU ordering of {I, J} was defined to be (I, J) if max I < max J , and (J, I) otherwise.

These orderings naturally extend to k non-empty pairwise disjoint subsets, and hence induce orderings of
vertices of trees. We now describe these orderings on trees with edges coloured by a set of colours C.

Definition 2.2.1. Let T be a reduced tree with profile (c; c0) (Definition 2.2.7 of [Sto24], informally a
type of tree where: every vertex has at least one input; the inputs of every vertex are ordered by a list-
ing/permutation; and the inputs of the entire tree are ordered by the listing/permutation c). For a vertex
v = (v1, ..., vn; v0), for 1 ≤ k ≤ n we let

cvk := {c ∈ c : there exists a directed path from c to the kth input of v }.
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We say that T is one of the following types of shuffle trees, if for every vertex v = (v1, ..., vn; v0), and for all
1 ≤ i < j ≤ n,

• min(cvi) < min(cvj
), then T is a LA-shuffle tree.

• min(cvi) > min(cvj
), then T is a LAop-shuffle tree.

• max(cvi) < max(cvj ), then T is a SU -shuffle tree.

• max(cvi) > max(cvj ), then T is a SUop-shuffle tree.

Let ST
LA

denote the set of strict isomorphism classes of LA shuffle trees (Definition 2.2.8 of [Sto24]), and

let ST
LA

v⃗,n⊂ ST
LA

be those with tree profile v⃗ and n levels. The SU shuffle trees are defined similarly.

Note that ST
LA

is precisely ST in Definition 2.2.8 of [Sto24]. There are clear symmetries in these definitions
which we now explicate.

Proposition 2.2.2. Let T denote the set of reduced trees. Let r : T → T denote the map which reverses the
order of the final listing of the tree, i.e. rv⃗ := r(v1, ..., vm; v0) := (vm, ..., v1; v0). Let s : T → T denote the
map which reverses the order of every vertex. Then these maps satisfy the following conditions.

• The maps r and s are involutive bijections.
• The maps r and s commute.
• The maps r and s preserve levels (height of each vertex).
• The map r restricts to a bijection of,

– LA and SUop shuffle trees, and
– SU and LAop shuffle trees.

• The map s restricts to a bijection of,
– LA and LAop shuffle trees, and
– SU and SUop shuffle trees.

• Thus the square of bijections to the right commute.

ST
LA

v⃗,n ST
LAop

v⃗,n

ST
SUop

rv⃗,n ST
SU

rv⃗,n

r

s

r

s

Proof. Straightforward from definitions. For the commutativity, observe that the map s preserves the final
listing of the tree, and that the map r preserves the listings of every vertex in the tree. □
Example 2.2.3. Here we illustrate four different height 2 shuffle trees, in bijection under the two maps.
For each tree, the listing of each vertex is given by the planar embedding, and the final listing of each tree
is indicated by the profile of the set it is contained in, e.g. the top left tree has the final listing

(
d

c1,c2,c3,c4

)
.

The vertices of the trees are labelled to clarify the bijections, and we stress that r produces a new tree solely
by changing the final listing.

α

β

c1 c4

γ

c2 c3 ∈ ST
LA( d

c1,c2,c3,c4

)

α

γ

c3 c2

β

c4 c1 ∈ ST
LAop(

d
c1,c2,c3,c4

)

α

β

c1 c4

γ

c2 c3 ∈ ST
SUop(

d
c4,c3,c2,c1

)

α

γ

c3 c2

β

c4 c1 ∈ ST
SU( d

c4,c3,c2,c1

)

s

r r

s

Additionally, each type of shuffle tree is a representative of the equivalence class of symmetric trees.

Definition 2.2.4. Let T ∈ ΣT v⃗ be a symmetric tree with profile v⃗. By Definition 2.2.8 of [Sto24], T is a set
of weakly isomorphic trees, i.e. trees which are equal under permuting the listing of the entire tree, and the
listing of each vertex. A v⃗-representative of T is a specific element of this set whose tree listing is also v⃗. As
each type of shuffle tree uniquely orients every vertex (Definition 2.2.1), we define the LA, SU,LAop, SUop

representative of T to be the unique corresponding shuffle tree with tree profile v⃗. Thus, for each type of
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shuffle tree (illustrated for LA) we define the symmetrisation and representation maps,

[−] : STLA

v⃗ → ΣT v⃗, −∗LA
: ΣT v⃗ → ST

LA

v⃗

which respectively, reconstructs the weak isomorphism class of each LA shuffle tree, and produces the unique
LA v⃗-representative of each symmetric tree with profile v⃗.

Proposition 2.2.5. The symmetrisation and representation maps are bijections. Furthermore, as they
conserve levels they restrict to bijections

[−] : STLA

v⃗,n → ΣT v⃗,n, ∗LA
: ΣT v⃗,n → ST

LA

v⃗,n

Proof. For each type of shuffle tree, both maps are clearly well-defined and mutual inverses as we can
reconstruct any equivalence class from any element, e.g. for any symmetric tree T = [T∗LA

]. We obtain the
restrictions to height n trees, as altering the listing of a vertex does not change its height.

□
Corollary 2.2.6. Taking composites of representation and symmetrisation maps provides new bijections
between the sets of shuffle trees.

ST
LA

v⃗,n ST
LAop

v⃗,n

ΣT v⃗,n

ST
SUop

v⃗,n ST
SU

v⃗,n

[−]∗SUop

[−]∗LAop

[−]∗SU

∗LA

∗LAop

∗SUop

∗SU

[−]∗SU

Example 2.2.7. Here are the four representations of the symmetrisation of the top left tree of Example 2.2.3.

α

β

c1 c4

γ

c2 c3 ∈ ST
LA( d

c1,c2,c3,c4

)

α

γ

c3 c2

β

c4 c1 ∈ ST
LAop(

d
c1,c2,c3,c4

)

α

β

c4 c1

γ

c3 c2 ∈ ST
SUop(

d
c1,c2,c3,c4

)

α

γ

c2 c3

β

c1 c4 ∈ ST
SU( d

c1,c2,c3,c4

)

s=[−]∗LAop

[−]∗SUop [−]∗SU

s=[−]∗SU

Example 2.2.8. Here are the three symmetric binary trees with profile
(

d
c1,c2,c3

)
(see for instance Section

7.6.2 of [LV12] in the uncoloured case), and their four representations. In each square the representations
are as follows; the top left is LA, the top right is LAop, bot left is SUop, and bot right is SU .

c1 c2

c3 c3
c2 c1

c3
c2 c1 c1 c2

c3

[−]∗LAop

[−]∗SUop [−]∗SU

[−]∗SU

c1 c3

c2 c2
c3 c1

c3 c1

c2 c2
c1 c3

[−]∗LAop

[−]∗SUop [−]∗SU

[−]∗SU

c1
c2 c3 c3 c2

c1

c3 c2

c1 c1
c2 c3

[−]∗LAop

[−]∗SUop [−]∗SU

[−]∗SU

As expected, each family of shuffle tree produces a unique representative of each symmetric tree, i.e. in the
LA case we observe that the top-left of each square differs. Note that the representations chosen by the
families can coincide, as indicated by the duplicates within squares.

We now construct four related notions of shuffle operads from these four families of shuffle trees.
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Definition 2.2.9. Let A1, ..., An be V-modules. We define the shuffle monoidal products to be

(A1 ◦LA ... ◦LA An)(v⃗) :=
∐

T∈ST
LA
n,v⃗

(A1 ◦ ... ◦An)(T ),

and so on, altering the underlying set of shuffle trees for each product. Note that (A1 ◦ ... ◦An)(T ) (and the
symmetric monoidal product for symmetric trees) can be found in Definition 3.1.3 of [Sto24].

Proposition 2.2.10. Each of the shuffle products above give V-Mod a strict monoidal structure with unit

I(v⃗) :=
{∐

Aut(v) 1E , v⃗ = (v; v) for some v ∈ Ob(V)
∅, else

Proof. The LA case is Lemma 3.1.4 of [Sto24]. The proofs for LAop, SU and SUop proceed similarly. □
Definition 2.2.11. Let (VΣ-Mod, ◦) denote the monoidal category of reduced symmetric modules with
the operadic symmetric monoidal product. Let (V-Mod, ◦LA) and (V-Mod, ◦SU ) respectively, denote the
monoidal category of reduced modules with the LA/SU operadic monoidal product. Then,

• a symmetric operad is a monoid in (VΣ-Mod, ◦),
• a LA-shuffle operad is a monoid in (V-Mod, ◦LA), and
• a SU -shuffle operad is a monoid in (V-Mod, ◦SU ).

By definition, a V-coloured LA-shuffle operad is a V-coloured shuffle operad of Definition 3.1.5 of [Sto24].
The variants of the standard zoo of equivalent operadic definitions are available for each type of operad, e.g.
partial, monadic and so on.

2.2.2. Unique up to Isomorphism But Many Ways to Forget. We now discuss the forgetful functor from
symmetric modules to non-symmetric modules, and how it forms the underlying functor of a strong monoidal
functor.

Definition 2.2.12. Let (C,⊗C , 1C) and (D,⊗D, 1D) be monoidal categories. A strong monoidal functor is
a triple consisting of a

• functor F : C → D,
• an isomorphism ε : 1C → F (1C), and
• a set of isomorphisms {µA,B : F (A)⊗D F (B)→ F (A⊗C B)}A,B∈C .

respecting well known unitality and associativity conditions (see for instance [ML13]).

Definition 2.2.13. Let f : VΣ-Mod → V-Mod denote the forgetful functor from the category of reduced
symmetric V-modules to the category of reduced V-modules, which forgets the underlying action of the
symmetric group.

Proposition 2.2.14. The forgetful functor is a strong monoidal functor from (VΣ-Mod, ◦) into both (V-
Mod, ◦LA) and (V-Mod, ◦SU ). Formally, if

∗Σ→LA : f(A) ◦LA f(B)→ f(A ◦B), and ∗Σ→SU : f(A) ◦SU f(B)→ f(A ◦B)

are the isomorphisms induced by the symmetrisation bijections, e.g. [−] : STLA

2,v⃗ → ΣT 2,v⃗ induces

(f(A) ◦LA f(B))(v⃗) =
∐

T∈ST
LA
2,v⃗

(f(A) ◦ f(B))(T ) ∼= f(
∐

T∈ΣT 2,v⃗

(A ◦B)(T )) = f((A ◦B))(v⃗).

Then the following triples are strong monoidal functors.

(f, id, ∗Σ→LA) : (VΣ-Mod, ◦, I)→ (V-Mod, ◦LA, I), and (f, id, ∗Σ→SU ) : (VΣ-Mod, ◦, I)→ (V-Mod, ◦SU , I)

Proof. The LA case is well known. For the uncoloured case we direct the reader to Proposition 5.3.3.1 of
[BD16] as the proof completely explicates the necessity of the reduced assumption. The groupoid coloured
extension is Lemma 3.1.10 of [Sto24]. The SU case follows via a similar argument. □
Given that the category of strong monoidal functors is closed under composition, we observe that up to
isomorphism, there is only one way for f to be a forgetful functor.
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Proposition 2.2.15. Let (V-Mod, ◦′, I) be a strict monoidal category, such that (f, id, µ) : (V-ModΣ, ◦, I)→
(V-Mod, ◦′, I) is a strong monoidal functor. Then, the composite of strong monoidal functors,

(f, id, µ) ◦ (f, id, µ) = (id, id, ∗−1
Σ→LA ◦ µ) : (V-Mod, ◦LA, I)→ (V-Mod, ◦′, I)

is strong monoidal, and clearly an isomorphism.

However, LA and SU shuffle operads are far from strictly unique.

Proposition 2.2.16. There exist infinitely many strict monoidal categories (V-Mod, ◦′, I) endowed with a
strong monoidal functor (f, id, µ) : (V-ModΣ, ◦, I)→ (V-Mod, ◦′, I).
Proof. We first provide one explicit counter example that addresses the heart of the issue. Let T be a reduced
tree. We say T is an ’odd-even’ shuffle tree if every vertex with odd arity is ordered under the LA shuffle
condition, and if every vertex with even arity is ordered under the SU shuffle condition, see Definition 2.2.1.
One can then mirror Section 2.2.1, defining a set of strict isomorphism classes of ’odd-even’ trees, providing
unique ’odd-even’ representations of every symmetric tree, and defining a monoidal category (V-Mod, ◦oe)
whose monoids are ’odd-even’ shuffle operads. One can then show there exists a strong monoidal functor
(f, id, ∗Σ→oe) : (V-ModΣ, ◦)→ (V-Mod, ◦oe). The only real point that requires checking over and above the
proof of Proposition 2.2.14, is that ∗Σ→oe remains associative. This follows as ordering any one vertex does
not change the arity of any other vertex. Thus given any height n tree, one can order all vertices at each
level, by any ordering of the levels of that tree, and still obtain the same result. There are many ways to
extend this counter example to an infinite family of counter examples, for instance the prior argument holds
for any LA/SU partition of N.

□
Remark 2.2.17. The coherent cellular diagonals of the permutahedra △LA and △SU not only admit iso-
morphic cellular images, but are also strictly the only coherent cellular diagonal alongside their opposites
(Theorem 5.13 and 5.15 of [DOLAPS23]. The key additional criterion that forces △LA and △SU to strictly
unique is condition (2) of Definition 5.7 of [DOLAPS23], which is informally an extra coherence condition
imposed by compatibility with the diagonal. Perhaps, (f, id, ∗Σ→LA) : (VΣ-Mod, ◦, I) → (V-Mod, ◦LA, I)
and (f, id, ∗Σ→SU : (VΣ-Mod, ◦, I)→ (V-Mod, ◦SU , I) are the only such strong monoidal functors which are
compatible with some additional Hopf operadic structure? See Section 5.3.3 of [LV12].

Remark 2.2.18. Where do the opposing notions of shuffle trees fit in? Well, if R : V-Mod→ V-Mod is the
functor which formally reverses each V-module A, i.e.

R(A)(v⃗) := A(rv⃗) with rv⃗ := r(v1, ..., vk; v0) = (vk, ..., v1; v0).

then R(−)f = R(−f ). Furthermore R(−f ) can be shown to be the underlying functor of a strong monoidal
functor from (V-ModΣ, ◦, I) into both (V, ◦LAop , I) and (V, ◦SUop , I), by mirroring Proposition 2.2.14.
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1. Introduction

Props, introduced by Adams and Mac Lane ([37]), are a type of symmetric monoidal 
category. Their representations model various (mixed) algebraic and coalgebraic struc-
tures including associative, commutative, Lie and Hopf algebras. They arise naturally in 
the study of deformation theory [1], [42], differential geometry [38], knot theory [11], [12], 
and topology [7], [56]. Homotopy props arise when one wishes to study variants of the 
algebraic structures above, which are only weakly associative. For instance, Mac Lane 
introduced PACTs, a version of homotopy associative props, and used them to identify 
Massey products of (co)commutative Hopf algebras (Section 7.2). Another example are 
the cobordism categories of Segal whose morphism spaces are moduli spaces of Riemann 
surfaces. In these cobordism categories, categorical composition is associative on the as-
sociated chain complex, but is only homotopy associative at the space level (e.g. Remark 
3.31 of [50]).

Wheeled props are props with an additional non-degenerate bilinear form or “trace” 
operation. They were introduced by Markl, Merkulov and Shadrin [38], where they used 
(homotopy) wheeled props to study Batalin–Vilkovisky quantisation formalism in the-
oretical physics. Wheeled props are also known to arise in invariant theory [16], and 
they play a key role in the study of universal finite type invariants of virtual and welded 
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tangles [11]. This is far from a spanning list, and we direct the interested reader to the 
more complete literature surveys of [24], [35] and [57].

These examples of homotopy (wheeled) props motivate a more systematic study of 
homotopy associative, or ∞-props. While there are many known models for ∞-operads 
and ∞-properads in the literature (e.g. [6], [9], [20], [24], [32], [44], [42] etc.) there are 
currently only a few suggested models for ∞-props (including [8], [23] and [21]), and 
∞-wheeled props (including [48]). This paper uses the machinery of Koszul duality to 
provide a algebraic model for homotopy, or ∞, (wheeled) props.

Over the last 20 years, the Koszul machine has been used to construct homotopy 
associative versions of many operadic structures. In brief, an operad P is said to be 
Koszul if, and only if, it admits a minimal model P∞ with a quadratic differential (Def-
inition 3.6.7). The minimal model P∞ is characterised by the property that algebras 
over P∞ are homotopy (associative) P -algebras. A coloured Koszul operad governing 
non-symmetric operads was first constructed in [54]. Later in [55], Ward constructed a 
groupoid coloured operad governing modular operads, and showed it was Koszul. Most 
recently it has been shown by two different groups of authors ([4], [27]) that the oper-
ads governing operadic families living on connected graphs (including operads, dioperads, 
wheeled properads, etc.) are all Koszul. A common thread unifying the last three papers, 
is that they all use the theory of convex polytopes, explicitly or implicitly, to interpret 
the minimal models of the operads.

Our present work, builds on this story with three main results. Firstly, in Sections 5
and 6, we construct groupoid coloured operads W and P , governing wheeled props and 
props respectively. We then prove, in Sections 5.5 and 6.5, that

Theorem 1.0.1. The groupoid coloured operads W and P are Koszul.

By virtue of the Koszul machine, the associated minimal models P∞ (and W∞) govern 
homotopy associative dg-(wheeled) props. Then in Section 7, we provide simple counter 
examples showing the following.

Theorem (7.1.1). There exist subcomplexes of W∞ and P∞ which are not isomorphic, 
as lattices, to the face poset of convex polytopes.

Consequently, there are no polytope based minimal models for the operads W and 
P . This shows that the previous techniques for proving the operads governing operadic 
structure are Koszul do not readily extend to (wheeled) props (Remark 7.1.2). Indeed, 
in order to prove that P and W are Koszul we develop a more generally applicable tool. 
In Section 4.3, we transfer the techniques of Groebner bases for operads ([14], [25]) to 
groupoid coloured operads with the following result.

Theorem (4.2.13). Let P be a groupoid coloured operad such that the associated coloured 
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.
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The proof of this theorem, in Section 4.2, relies on the studying the extent that the 
forgetful functor −fV , from groupoid coloured modules to (discrete-groupoid) coloured 
modules, fails to be monoidal with respect to the operadic monoidal products on both 
categories. In particular, given a groupoid coloured shuffle operad P we construct 
an epimorphism, of groupoid coloured shuffle cooperads, between the bar complexes 
B(P fV ) � B(P ) (Proposition 4.2.4). This lets us infer the following.

Proposition (4.2.1). A groupoid coloured shuffle operad P is Koszul if the coloured shuffle 
operad P fV is Koszul.

Thus by obtaining an explicit simple presentation for P fV which we denote P∗ (Corol-
lary 4.2.12), we may apply known rewriting techniques for coloured operads ([33], [40]) 
to prove P is Koszul (Section 4.3). We note that Theorem 4.2.13 can also be applied to 
prove that the operads governing connected operadic structures are Koszul (Section 6.6). 
Two less dramatic results that may also be of independent interest, are new biased defini-
tions of (wheeled) props (5.1.2, 6.1.2). Critically, for defining W and P , the equivariance 
axioms of these structures enable a simple canonical form for every composite of oper-
ations. Thus, when we translate these equivariance axioms into actions of the groupoid 
(in Sections 5.2 and 6.2), the operads inherit these simple canonical forms.

The general theory and constructions of this paper can be used for many purposes. For 
instance, as we now know that W and P are Koszul, we can apply the technique of homo-
topy transfer theory (HTT) to these structures (Section 7.2). As homology is an example 
of a homotopy retract (over a field of characteristic 0), we are able to construct gener-
alised Massey products. This immediately provides an alternate characterisation of the 
formality of a wheeled prop (Proposition 7.2.6), and a means of reinterpreting a theorem 
of Mac Lane as a particular instance of HTT (Section 7.2). In addition, HTT provides 
an alternate pathway to studying deformations of (wheeled) props (Remark 7.2.9).

Currently, the author is working with Philip Hackney and Marcy Robertson to develop 
graphical and Segal models for infinity props. It is expected that the nerve functor of 
[30], from strictly unital algebraic homotopy operads to dendroidal sets, will extend to 
homotopy props. That is to say, a unital version of an algebraic homotopy prop (i.e. an 
algebra over P∞), will be an example of graphical ∞-prop (i.e. a graphical set satisfying 
an inner horn condition). Additionally, it is expected that graphical ∞-props will be 
cofibrant objects in the model category of simplicially enriched props [8], [23].

Another area for future work is pursuing combinatorially simpler models for homotopy 
(wheeled) prop(erad)s. Although homotopy props do not admit a nesting model governed 
by polytopes, properads do. In particular, the appropriate minimal model for the operad 
governing properads is given by the poset associahedra of [18] (Remark 7.1.3). This poset 
has been recently realised as a convex polytope in [39] and [49]. As such, one could define 
tensor products of homotopy properads by extending the program of [29]. Finally, it is 
plausible that ‘simpler’ combinatorial models for homotopy (wheeled) props exist. Given 
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the inclusion of the operad Com into W and P (Proposition 7.0.2), an extension of 
existing graphical models for the coLie cooperad ([51], [52]) might bear fruit.
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2. Preliminaries

Throughout this paper, let E be a co-complete, closed symmetric monoidal category 
and let V be a small groupoid. Informally, we say that a coloured wheeled prop is a 
C-coloured bimodule in E , together with composition operations that are described by 
wheeled graphs (11.33 of [57] and Definition 5.1.2). As such, in order to define (wheeled) 
props, we first need to introduce some preliminaries on bimodules and wheeled graphs. 
Furthermore, as we will construct a groupoid coloured operad governing wheeled props, 
we will need to define groupoid coloured bimodules, and their morphisms.

2.1. Bimodules

We first recall the definition of C-coloured profiles and introduce notation, which we 
will use throughout this paper.

Definition 2.1.1 (Section 1.1 of [57]). Let C be a non-empty set (of colours) and let Σn

denote the symmetric group on n letters.

(1) An element in C will be called a colour.
(2) A C-profile of length n is a finite sequence

c = (c1, . . . , cn)

of colours. We write |c| = n for the length. The empty profile, with n = 0, is denoted 
by ∅.
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(3) Given two C-profiles c, d and i ∈ {1, ..., |c|} we define the following C-profiles

c ◦i d = (c1, ..., ci−1, d1, ..., d|d|, ci+1, ..., c|c|)

(c, d) = (c1, ..., c|c|, d1, ..., d|d|)

c \ ci = (c1, ..., ci−1, ci+1, ..., c|c|)

(4) For a C-profile c of length n and σ ∈ Σn, define the left and right actions

σc =
(
cσ(1), . . . , cσ(n)

)
and cσ =

(
cσ−1(1), . . . , cσ−1(n)

)
.

(5) The groupoid of all C-profiles with left (resp., right) symmetric group actions as 
morphisms is denoted by P(C) (resp., P(C)op).

(6) Define the product category S(C) := P(C)op × P(C). Its elements are pairs of C-
profiles and are written either horizontally as (c; d) or vertically as 

(
d
c

)
.

A bimodule is a functor P ∈ ES(C) (Definition 10.28 of [57]). We may generalise this 
definition to a groupoid coloured bimodule as follows.

Definition 2.1.2. Let Wk(V ) := V k �Σk, where we suppose that Σk acts on V k from the 
left, and let W(V ) :=

∐
k≥0 Wk(V ).

• A VΣ-bimodule is a functor P ∈ ES(V ), where S(V ) := W(V )op × W(V ).
• A VΣ-module is a functor P ∈ EW(V )op×V .
• A non-symmetric groupoid coloured bimodule, or a V -bimodule is a VΣ-bimodule in 

which Σk acts trivially. Similarly, one can define a non-symmetric V -module.

In the case that V is the discrete category of colours, then we recover the definition 
of a bimodule. In the more general case, we can unpack the definition of a groupoid 
coloured bimodule to see that it consists of the following data.

• For any pair of profiles, it has an object P
(
d
c

)
∈ E .

• A (iso)morphism 
(
δ
φ

)
: P
(
d
c

)
→ P

(
d′

c′
)

in W(V ), is equivalently a pair of compatible 

permutations and isomorphisms 
(
δ
φ

)
= (
(
σ
τ

)
, 
(
g
f

)
), where (τ ; σ) ∈ Σ|c| × Σ|d| and 

g : σd → d′ ∈ V |d|, f : c′ → cτ ∈ V |c|. Thus, this morphism of W(V ) induces an 
action of the groupoid coloured module

P

(
d

c

) (δ
φ)=((σ

τ),(g
f))−−−−−−−−−→ P

(
d′

c′

)
. (1)

We note in particular that, the identity of W(V ) is (
(
id
id

)
, 
(
id
id

)
) and composition 

satisfies
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(
(
σ′

τ ′

)
,

(
g′

f ′

)
) ◦ (
(
σ

τ

)
,

(
g

f

)
) = (

(
σ′σ
ττ ′

)
,

(
g′′

f ′′

)
). (2)

Here if g′ : σ′d′ → d′′ and f ′ : c′′ → c′τ ′ then g′′ and f ′′ are given by the clear 
composites

g′′ : σ′σd → σ′d′ → d′′

f ′′ : c′′ → c′τ ′ → cττ ′.

Remark 2.1.3. It is straightforward to confirm that our definition of a groupoid coloured 
module is dual (and isomorphic) to Definition 3.3 of [46] (when restricted to groupoids). 
We also note that our definition is equivalent to the dual of the definition of a V -
coloured sequence presented in [55] if a very minor error is corrected. In Definition 2.2.1, 
the (dual) definition of a V -coloured module is explicitly unpacked (here it is called a 
V -coloured sequence, and it is also restricted to the case in which k > 0, see Remark 
2.3.1 of [55]). However, in this unpacking of the definition, some necessary morphisms 
are omitted. There are more morphisms acting on V -coloured modules than those given 
via the automorphisms of V (unless V is skeletal), in particular there are morphisms

(
v0

v1, ..., vr

)
(σ,f1,...,fr;fop

0 )−−−−−−−−−−→
(

v′
0

v′
1, ..., v

′
r

)

where σ ∈ Sr, fop
0 : v0 → v′

0 and fi : vi → v′
σ−1(i). This minor misidentification changes 

none of the results of the paper, this is because the groupoid still acts on a tree T via 
the automorphism group of the internal edges of T (using Eq. (2) of Definition 2.1.2 to 
define Eq. (3) of Definition 3.1.2, instead of (2.1) to define (2.4) as in [55]).

Definition 2.1.4. Given two small groupoids U , V , and two symmetric monoidal cate-
gories D, E , let P ∈ DS(U) and Q ∈ ES(V ) be two distinct bimodules. A morphism of 
bimodules h : P → Q consists of a morphism of groupoids h0 : U → V , and a sequence 
of set maps

{P
(
d

c

)
h
(d
c
)

1−−−→ Q

(
h0(d)
(c)h0

)
}(d

c)∈ob(S(C)),

so that all squares of the following form commute.

P
(
d
c

)
Q
(
h0(d)
(c)h0

)

P
(
d′

c′
)

Q
(h0(d′)
(c′)h0

)
(
(σ
τ

)
,
(g
f

)
)

h

(
d
c

)

1

(
(σ
τ

)
,
(h0(g)
(f)h0

)
)

h

(
d′
c′
)

1
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Above, (
(
σ
τ

)
, 
(
g
f

)
) is any action of the UΣ-bimodule P given by Eq. (1), and in 

an abuse of notation we use h0(−), (−)h0 to denote the morphisms of groupoids 
U |d| → V |d|, and respectively U |d|op → V |d|op, induced by h0 : U → V . To be 
explicit h0(d) := (h0(d1), ..., h0(dk)), and if g = (g1, ..., gd) ∈ HomV |d|(σd, d′) then 
h0(g) = (h0(g1), ..., h0(gd)) ∈ HomU |d|(h0(σd), h0(d′)).

A morphism h of groupoid coloured operads is said to be

• full, if the sequence of set maps are injective,
• faithful, if the sequence of set maps are surjective,
• an epimorphism, if it is faithful, and the underlying morphism of groupoids is essen-

tially surjective,
• an isomorphism, if it is fully faithful and h0 is an isomorphism of groupoids.

We similarly define and characterise the morphisms of (non-symmetric) groupoid 
coloured modules. Other familiar types of morphisms are possible, but will not be needed 
in this text.

We note this definition of a morphism of groupoid coloured bimodules allows for both 
differing groupoids and differing ambient symmetric monoidal categories. This extension 
to allow differing groupoids will be essential in the study of particular morphisms of 
groupoid coloured operads (see Section 4.2 and Proposition 7.0.2). If we specialise Def-
inition 2.1.4 to a fixed groupoid V and fixed symmetric monoidal category E , then a 
morphism of groupoid coloured bimodules is a natural transformation.

2.2. Fundamental graphical definitions

Operations in (wheeled) props are parameterised by wheeled graphs. In this section, 
we provide a formal definition of a wheeled graph (Definition 2.2.4) and describe when 
two such graphs are isomorphic (Definition 2.2.5). The definitions of this subsection all 
stem verbatim from [24] and [57], further related definitions and examples may be found 
there.

2.2.1. Generalised graphs
Fix an infinite set F once and for all.

Definition 2.2.1. A generalised graph G is a finite set Flag(G) ⊂ F with

• a partition Flag(G) =
∐

α∈A Fα with A finite,
• a distinguished partition subset Fε called the exceptional cell,
• an involution ι satisfying ιFε ⊆ Fε, and
• a free involution π on the set of ι-fixed points in Fε.
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For a given generalised graph G, we unpack this definition and introduce some no-
tation. The elements of Flag(G) are called flags (or half edges). Every non-exceptional 
partition subset of Flag(G) say Fα �= Fε is a vertex, and if f ∈ Fα we say the flag f
is adjacent (or attached) to the vertex. We note it is possible for a vertex to have no 
adjacent flags, in which case Fα = {∅}. The exceptional cell Fε then corresponds to flags 
which are ‘free floating’ in the graph, and are not associated to any vertices. We shall 
denote the vertices of a graph as V t(G).

The non-trivial orbits of the involutions are called edges of the graph, and the fixed 
points of the involutions are called legs of the graph. Orbits of ι are called internal 
edges, whereas orbits of π are called exceptional edges. Note that because the involution 
π is free on the fixed points of ι, every fixed point of ι is part of an exceptional edge. 
Non-trivial orbits of flags in Fε are called exceptional loops. Finally, the fixed points of ι
(there are no fixed points of π) are called legs of the graph, these can also be considered 
exceptional (or ordinary) if they are (not) in Fε.

Example 2.2.2 (1.12 of [57]). Consider the following diagrammatic representation of a 
generalised graph γ

v2

o1 o2

v1

i1 i2

e−1

e1

v3

f−1

f1

g−1 g1

The underlying partition set of γ is {{i1, i2, e1}, {o1, o2, e−1}, ∅, {f∓1, g∓1}} with the last 
element being the exceptional cell. The 2 orbits of the involution ι are e∓1 and g∓1, all 
other flags are fixed points. The involution π has one 2 orbit corresponding to f∓1 all 
other flags are fixed. The graph γ has three vertices, a single exception edge with flags 
f∓1 and a single exceptional loop with flags g∓1.

2.2.2. Structures on generalised graphs
We now introduce further structure on generalised graphs in order to define wheeled 

props. The extra data we introduce is: a colour for each edge; an orientation for each 
edge; and a labelling of the incoming/outgoing flags of each vertex, as well as labelling 
of the generalised graph.

Definition 2.2.3. Suppose G is a generalised graph.

(1) A colouring for G is a Flag(G) κ−→ C that is constant on orbits of both involutions ι
and π.

(2) A direction for G is a function Flag(G) δ−→ {−1, 1} such that
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• if ιx �= x, then δ(ιx) = −δ(x), and
• if x ∈ Fε, then δ(πx) = −δ(x).

(3) For G with direction, an input (resp. output) of a vertex v is a flag x ∈ v such that 
δ(x) = 1 (resp. δ(x) = −1). An input (resp., output) of the graph G is a leg x such 
that δ(x) = 1 (resp. δ(x) = −1). For u ∈ {G} ∪ V t(G), the set of inputs (resp. 
outputs) of u is written as in(u) (resp. out(u)).

(4) A listing for G with direction is a choice for each u ∈ {G} ∪ V t(G) of a bijection of 
pairs of sets,

(in(u), out(u)) 	u−→ ({1, . . . , |in(u)|}, {1, . . . , |out(u)|}) ,

where for a finite set T the symbol |T | denotes its cardinality.

Definition 2.2.4. A (C-coloured) wheeled graph, is a generalised graph together with 
a choice of a colouring, a direction, and a listing. For such a graph G, we may use the 
colouring, listing, and direction to speak of the profile of the graph and any of its vertices. 
If u ∈ {G} ∪ V t(G), with in(u) = c and out(u) = d (treating these as sets ordered by 
the listing) then we say that u has profile 

(
d
c

)
.

A wheel of a (directed) wheeled graph is a directed cycle. A wheel-free graph is a 
wheeled graph without any wheels.

A convention: All graphs in this paper will be drawn with their inputs on the bottom 
and outputs on the top, e.g. the two graphs in Example 2.2.6 each have one vertex with 
two inputs and no outputs.

2.2.3. Isomorphic graphs
So having defined what a graph is, all that remains is the question of when should 

two graphs be considered the same.

Definition 2.2.5 (4.1 and 4.15 of [57]). Let G and G′ be wheeled graphs.

• A weak isomorphism ϕ : G → G′ is a bijection of partitioned sets that commutes 
with both involutions and leaves invariant both the colouring and the directions.

• A strict isomorphism ϕ : G → G′ is a weak isomorphism that also leaves invariant 
the listing.

Example 2.2.6. The following two graphs whose listings are given by the planar embed-
ding are weakly isomorphic, but not strongly isomorphic.

v

i1 i2

v

i2 i1
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2.2.4. Trees
Operations in operads are parameterised by trees. So, in this section, we specialise the 

prior definitions of wheeled graphs and their isomorphisms to describe this important 
type of graph.

Definition 2.2.7. A tree is a simply connected graph where every vertex has a single 
output. We shall refer to the sole output of a tree as the root. We say a tree T with 
profile (c; d) is:

• reduced if every vertex has at least one input.
• a C-tree if it is a reduced tree with a colouring C (a key colouring being ob(V )).
• level if the height of every input leg (leaf) is the same. The height of a leg or vertex 

of a tree is defined to be the number of vertices on the directed path from it to the 
root. We say a tree with 0 levels is empty.

• a shuffle tree if for every vertex v of the tree say with profile (v1, ..., vn; v0), that for 
1 ≤ i < j ≤ n we have that min(ci) < min(cj) where ck = {c ∈ c: there exists a 
directed path from c to vk}.

• a strongly regular tree if the listing of T is given by performing a depth first search 
on the tree using the listing of the vertices to determine the order of the exploration 
of the children. In other words, the inputs of the tree are ordered left to right through 
embedding the tree into the plane.

Examples of shuffle trees and strongly regular trees are given in Example 3.1.6.

We note that this definition of a ob(V )-coloured tree is the same as Definition 2.3 
of [55], with the additional caveat that every internal vertex of the tree has an explicit 
listing as well. We explicitly refer to these trees as being object-coloured to stress that 
the morphisms of the groupoid are not (yet) involved.

Using the prior definitions of isomorphic graphs, we define the following classes of 
trees.

Definition 2.2.8. Let,

• ΣT := weak isomorphism classes of, possibly empty, coloured trees.
• RT := strict isomorphism classes of, possibly empty, coloured strongly regular trees.
• ST := strict isomorphism classes of, possibly empty, coloured shuffle trees.

If we wish to exclude the empty trees, we shall drop the over-line. The subscripts −n,
v

refer to the restrictions of these classes to those trees with n levels and profile 	v.

We note that the notion of an isomorphism of ob(V ) coloured trees in [55] (Definition 
2.9) is equivalent to that of a weak isomorphism.
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3. Groupoid coloured operads

In this section, we present alternate definitions (monoidal and monadic) of variants 
(symmetric, non-symmetric and shuffle) of groupoid coloured operads, and define what 
it means for these operads to be Koszul. The necessary theory is a natural amalgamation 
of shuffle operads ([14], [25]) and groupoid coloured operads ([46], [55]). We note that 
groupoid coloured operads are a specific instance of category coloured operads [46], 
and the latter is explicitly related to internal operads [3], and substitudes [17], in [53]. 
Furthermore, [3] establishes the connection between substitudes [17], regular patterns 
[19], and Feynman categories [26].

3.1. Monoidal groupoid coloured operads

We start by presenting monoidal definitions of the operads and providing fundamental 
examples. Our definition of a symmetric groupoid coloured operad is precisely that of 
Ward’s (accounting for Remark 2.1.3). To define our monoids, we will decorate trees 
with groupoid coloured modules, but because our trees are reduced, we will need the 
following assumption.

Definition 3.1.1. A groupoid coloured module A : W(V )op ×V → E is said to be reduced
if, for all v ∈ V , A(∅, v) = ∅, the terminal object in E .

For the remainder of this paper, we assume all groupoid coloured modules (symmetric 
or non-symmetric) are reduced. That is to say, all of our ‘operations’ have at least one 
input. We make this assumption to align with the theory of Ward (see Definition 2.35 of 
[55]). It is also required to establish a monoidal functor between symmetric and shuffle 
groupoid coloured operads (Lemma 3.1.10).

Recall from Definitions 2.2.4 and 2.2.7 that every vertex w of a tree T has a list-
ing/profile.

Definition 3.1.2 (The objects AΣ(T ) and A(T )). Let AΣ be a VΣ-module, and let A be 
a V -module. Let w be a vertex of a ob(V )-tree with profile (v1, ..., vr; v0) then set

AΣ(w) := [
∐

σ∈Sr

AΣ(vσ(1), ..., vσ(r); v0)]Sr

A(w) := A(v1, ..., vr; v0)

Here AΣ(w) inherits a natural action of (
∏U

i HomV (−, vi)) × HomV (v0, −) where ×U
i

is the unordered product, and A(w) inherits a natural action of (
∏

i HomV (−, vi)) ×
HomV (v0, −). We also explicitly define our objects for empty trees,

AΣ(|v) = A(|v) :=
∐

Aut(v)

1E
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with their induced action by Hom(−, v) × Hom(v, −). Let T be a ob(V )-tree and form 
the unordered tensor products 

⊗
w∈V t(T ) AΣ(w) and 

⊗
w∈V t(T ) A(w). Then any edge E

of T with colour vE , input flag x and output flag y provides the group Aut(vE) with an 
action on this tensor product by acting simultaneously on the vertex connected to x on 
the left and the vertex connected to y on the right. This action commutes across edges 
by Eq. (2), and hence provides an action of the group 

∏U
E∈Edges(T ) Aut(vE) on these 

tensor products. We let [−]Edges(T ) denote the coinvariants of this action and define,

AΣ(T ) := [
⊗

w∈V t(T )

AΣ(w)]Edges(T ) (3)

A(T ) := [
⊗

w∈V t(T )

A(w)]Edges(T ) (4)

Definition 3.1.3. For a tree T with n levels, VΣ-modules AΣ,1, ..., AΣ,n, and V -modules 
A1, ..., An, let

(AΣ,1 ◦ ... ◦ AΣ,n)(T ) := [
⊗

w∈V t(T )

AΣ,ht(w)(w)]Edges(T )

(A1 ◦ ... ◦ An)(T ) := [
⊗

w∈V t(T )

Aht(w)(w)]Edges(T )

We then define the following symmetric, non-symmetric, and shuffle monoidal products 
as,

(AΣ,1 ◦ ... ◦ AΣ,n)(	v) :=
∐

T∈ΣTn,�v

(AΣ,1 ◦ ... ◦ AΣ,n)(T );

(A1 ◦ ... ◦ An)(	v) :=
∐

T∈RTn,�v

(A1 ◦ ... ◦ An)(T );

(A1 ◦sh ... ◦sh An)(	v) :=
∐

T∈STn,�v

(A1 ◦ ... ◦ An)(T ).

Lemma 3.1.4. Each of the products above give the underlying category a strict monoidal 
structure with unit

I(	v) :=
{∐

Aut(v) 1E , 	v = (v; v) for some v ∈ Ob(V )
∅, else

This (to be proven) lemma provides the following monoidal definitions of operads.

Definition 3.1.5.
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(1) A symmetric groupoid coloured operad is a monoid in the category of VΣ-modules 
with the monoidal product given by symmetric composition.

(2) A non-symmetric groupoid coloured operad is a monoid in the category of V -modules 
with the monoidal product given by non-symmetric composition.

(3) A shuffle groupoid coloured operad is a monoid in the category of V -modules with 
the monoidal product given by shuffle composition.

We now prove Lemma 3.1.4.

Proof. For the symmetric case, we refer the reader to Proposition 3.6 of [46] and Lemma 
2.22 of [55] (accounting for Remark 2.1.3). We shall only explicitly prove the shuffle case, 
and the other cases follow similarly. Let V t(T )n = {v ∈ V t(T ) : ht(v) = n}, then

(A1 ◦sh (A2 ◦sh A3))(	v)

=
∐

T∈ST 2,�v

(A1 ◦ (A2 ◦sh A3))(T )

=
∐

T∈ST 2,�v

[
⊗

w1∈V t(T )1

A1(w1)
⊗

w2∈V t(T )2

(A2 ◦sh A3)(w2)]Edges(T )

=
∐

T∈ST 2,�v

[
⊗

w1∈V t(T )1

A1(w1)
⊗

w2∈V t(T )2

(
∐

T2∈ST 2, �w2

(A2 ◦ A3)(T2))]Edges(T )

=
∐

T∈ST 2,�v

[
⊗

w1∈V t(T )1

A1(w1)
⊗

w2∈V t(T )2

(

∐

T2∈ST 2, �w2

[
⊗

w′
1∈V t(T2)1

A2(w′
1)

⊗

w′
2∈V t(T2)2

A3(w′
2)]Edges(T2)

)]Edges(T )

=
∐

T ′∈ST 3,�v

[
⊗

w1∈V t(T ′)1

A1(w1)
⊗

w2∈V t(T ′)2

A2(w2)
⊗

w3∈V t(T ′)3

A3(w3)]Edges(T ′)

= (A1 ◦sh A2 ◦sh A3)(	v)

The second to last line follows as E is a closed monoidal category, so we can iteratively 
commute the colimits and monoidal products. The grouping of the two coproducts into 
the single coproduct 

∐
T ′∈ST 3,�v

is done by the obvious bijection. Similar working shows 
((A1 ◦sh A2) ◦sh A3)(	v) = (A1 ◦sh A2 ◦sh A3)(	v) yielding the associativity of the product. 
The required unitality results are then easily verified, giving the result. �

Example 3.1.6. Groupoid coloured operads coloured by a discrete category are coloured 
operads. This can be seen in the case of E = V ect, the category of vector spaces, by 
observing that the defined monoidal products are equivalent to those of Definition 1.5 of 
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[25]. This follows from inspection, however we clarify the following bijections to structures 
used in their definition.

• A non-decreasing surjection f : [m] → [n] is a linear tree of height 2. In particular if 
in = min{i : f(i) = n} then the corresponding linear tree is

1 . . . i2 − 1 . . .
in . . . n

• A shuffling surjection f : [m] → [n] (i.e. one in which min f−1(i) < min f−1(j) for 
all i < j) is a shuffle tree of height 2. In particular if i1,k < i2,k < ... < i|f−1(k)|,k
are the elements of f−1(k) ordered smallest to largest then the corresponding shuffle 
tree is

i1,1 = 1 . . . i|f−1(1)|,1
. . .

i1,n . . . i|f−1(n)|,n

We make the following definitions in light of this example.

Definition 3.1.7. We refer to (non-groupoid) coloured operads as discrete coloured op-
erads. Given a groupoid V , a ob(V )-coloured operad is a discrete coloured operad with 
objects/colours ob(V ).

Another fundamental example of a groupoid coloured operad is the endomorphism 
operad.

Definition 3.1.8 (Example 2.15 of [55]). A functor X : V → E admits a natural extension 
into a groupoid coloured module EndX . For each profile (v1, ..., vn; v0)

EndX(v1, ..., vn; v0) := HomE(X(v1), ..., X(vn);X(v0))

with inherited action of (×U
i HomV (−, vi)) × HomV (v0, −), and the Σn action given by 

permuting the labels. This groupoid coloured module admits the structure of a unital 
V -coloured operad with composition given by composition of functions. We call EndX

the endomorphism operad.

The operad structure of EndX is well-defined, as associativity of functions not only 
yields associativity of the operadic structure maps, but also compatibility of the struc-
ture maps with the action of groupoid on the internal edges. A morphism of (groupoid 
coloured) operads is a morphism of the (groupoid coloured) modules (Definition 2.1.4), 
which is also compatible with the operadic structure maps.
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Definition 3.1.9 (2.3.2 of [55]). Let X : V → E be a functor and P be a V -coloured 
operad. A P -algebra structure on X is a morphism of groupoid coloured operads P →
EndX .

If this reader at this stage wants a more sophisticated example of a groupoid coloured 
operad, then it is possible to skip ahead and read Section 5-5.2 which includes a nice 
example of the equivalence classes induced by the action of the groupoid on internal edges 
of trees (Example 5.2.1). This later section does use some terminology introduced in the 
remainder of this section, but should be relatively clear to the reader already familiar 
with operads. Other examples of groupoid coloured operads include the operad governing 
props (this is less approachable for technical reasons, but can be found Section 6), and 
the operad governing modular operads (see Section 3.1 of [55]).

We close this section by noting that there is a natural forgetful functor −f from 
VΣ-modules to V -modules, which forgets the action of the group of symmetries.

Lemma 3.1.10. Given VΣ-modules P and Q we have that

(P ◦ Q)f ∼= P f ◦sh Qf

Proof. As the forgetful functor does not touch the underlying coinvariants given by the 
groupoid, this is an immediate corollary of the corresponding result for discrete coloured 
operads in [25] (Section 1.7, which is itself a corollary of Proposition 3 of [14]), given we 
have assumed our modules are reduced (Definition 3.1.1). �

The forgetful functor is not only straightforward to calculate in practice (for instance 
see Example 4.3.5, and Section 5.3), but also enables us to characterise when O is Koszul 
by inspecting Of (Definition 3.6.7).

3.2. Monadic groupoid coloured operads

In this section, we introduce monadic definitions of our operads and prove their equiv-
alence to the monoidal definitions. In many cases it is more convenient to work with 
non-unital variants of operads (e.g. Sections 5, 6), and monadic definitions provide a 
clear path to non-unital variants. We note that our monadic definition of a symmetric 
groupoid coloured operad is that of [55], and the others are natural alterations.

Definition 3.2.1. We define the following endofunctors

• Let TV ,Σ, TV ,Σ : VΣ-modules → VΣ-modules be defined on objects as

TV ,Σ(A)(	v) :=
∐

T∈ΣT

AΣ(T ), TV ,Σ(A)(	v) :=
∐

T∈ΣT

AΣ(T )



K. Stoeckl / Advances in Mathematics 454 (2024) 109869 17

• Let TV , TV : V -modules → V -modules be defined on objects as

TV (A)(	v) :=
∐

T∈RT

A(T ), TV (A)(	v) :=
∐

T∈RT

A(T )

• Let TV ,sh, TV ,sh : V -modules → V -modules be defined on objects as

TV ,sh(A)(	v) :=
∐

T∈ST

A(T ), TV ,sh(A)(	v) :=
∐

T∈ST

A(T )

Morphisms of VΣ (and V )-modules are natural transformations, and so they are given 
by collections of equivariant maps from AΣ(	v) → BΣ(	v), which induce maps from 
AΣ(T ) → BΣ(T ) (and similarly for A(−)). Taking the coproduct of these maps specifies 
the endofunctors on morphisms.

Lemma 3.2.2. Substitution of trees endows these functors with the structure of a monad.

Proof. See Definition 2.1.1 of [55] for a definition of substitution of trees, it is straight-
forward to modify this definition to also track the listings of the internal vertices (as 
required by Definition 2.2.7). From here, the proofs for TV ,Σ and TV ,Σ are Theorems 
2.10 and 2.11 of [55]. The modifications of these proofs to yield the results for the other 
functors is straightforward. �

Definition 3.2.3. These yield the following monadic definitions of groupoid coloured op-
erads,

• A symmetric (non-)unital groupoid coloured operad is a algebra over the monad 
TV ,Σ (resp. TV ,Σ).

• A non-symmetric (non-)unital groupoid coloured operad is a algebra over the monad 
TV (resp. TV ).

• A shuffle (non-)unital groupoid coloured operad is a algebra over the monad TV ,sh

(resp. TV ,sh).

By this definition, each groupoid coloured operad (of any type) P comes with a morphism 
ηT : P (T ) → P (	v) for every ob(V )-tree T of profile 	v, this morphism ‘contracts’ the tree.

Lemma 3.2.4. The unital monadic definitions (Definition 3.2.3) are equivalent to the 
monoidal definitions (Definition 3.1.5).

Proof. A sketch of the proof for symmetric operads is given in Theorem 2.2.4 of [55]. 
The proof is modified in the obvious ways for non-symmetric and shuffle operads. �
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Definition 3.2.5 (2.19 of [55]). An augmentation of a unital groupoid coloured operad P
is a morphism P → T where T is the unique unital operad structure on the V -module 
given by

T (	v) :=
{

1E , 	v = (v; v) for some v ∈ Ob(V )
terminal object in E , otherwise

An augmented operad is an operad with an augmentation. If E is an Abelian category, 
then the augmentation ideal is the kernel of these maps, and we denote it P .

Corollary 3.2.6. An augmented operad P in an Abelian category is isomorphic to P .

Proof. Immediate, but see for instance [34], Proposition 21. �

3.3. Partial compositions

We will use partial operadic compositions throughout this paper (see [34] for the 
uncoloured case). Instead of defining partial groupoid coloured operads and proving the 
equivalence of this definition (which is possible but tedious), we will simply define a 
partial composition as monadic contractions (3.2.3) of particular trees.

Definition 3.3.1. Let P be a groupoid coloured shuffle operad we define the partial com-
position

P

(
d

c

)
⊗ P

(
ci
b

)
◦i,σ−−→ P

(
d

(c ◦i b)σ

)

by the contraction map applied to a shuffle tree T with 2 vertices. In particular, for 
α ∈ P

(
d
c

)
and β ∈ P

(
b
a

)
we define α ◦i,σ β to be the contraction map ηT applied to the 

shuffle tree T with: 2 vertices; the root vertex decorated by α; the lower vertex decorated 
by β; the lower vertex connected to the ith input flag of the root; and the listing of the 
legs of the tree specified by σ. In other words, σ is a shuffle permutation, which is to say 
that

• for j ≤ i, σ(j) = j

• σ(i + 1) < σ(i + 1) < ... < σ(i + |b|)
• σ(i + |b| + 1) < ... < σ(|c| + |b| − 1).

We will occasionally use the shorthand ◦ϕ to refer to a partial composition with i and 
σ suppressed. We also similarly define partial compositions for symmetric and non-
symmetric groupoid coloured operads as the contractions of the obvious trees associated 
to
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P

(
d

c

)
⊗ P

(
ci
b

)
◦i−→ P

(
d

c ◦i b

)

3.4. Some assumptions

We now mirror [55] (Assumption 2.28 and above) and make two assumptions for the 
rest of this paper. Firstly, we assume that Aut(v) is finite for all v ∈ Ob(V ). Secondly, 
we assume that the co-complete and closed symmetric monoidal category used by our 
operads is dgV ectK, the category of differential graded vector spaces over K, a field of 
characteristic 0. The finiteness of Aut(v) not only allows for summation over automor-
phism groups as in Ward, but also enables an isomorphism between groupoid coloured 
shuffle operads and discrete coloured shuffle operads developed in Section 4.2. We restrict 
to characteristic 0 for the same reasons as Ward, i.e. homotopy transfer theory can be 
done in characteristic 0 without resolving automorphisms, but this is not the case in char-
acteristic p > 0. In particular, the characteristic 0 assumption is needed for a groupoid 
coloured module to admit its homology as a deformation retract (Proposition 7.2.2).

3.5. Tree monomials and presentations of operads

Tree monomials correspond to the basis elements of free operads, and an understand-
ing of their form is needed for developing Groebner bases for operads. Groupoid coloured 
tree monomials are equivalence classes of discrete coloured tree monomials under the ac-
tion of the groupoid, so this work naturally extends Sections 2.2-2.5 of [25].

By the general theory of monads, each of our operads admits a forgetful functor which 
maps to the underling VΣ (or V )-module, and this forgetful functor admits a left adjoint. 
We shall denote these left adjoints FΣ, F , Fsh for the unital variants and FΣ, F, Fsh for 
the non-unital variants. If we wish to highlight the underlying groupoid we will use a 
superscript e.g. FV . A free groupoid coloured operad is the image of one of these left 
adjoints applied to an appropriate groupoid coloured module.

Definition 3.5.1. Let E be a VΣ (or V )-module, a groupoid coloured tree monomial of 
FΣ(E) is of the form [

⊗
w∈V t(T ) ew]Edges(T ) (see Definition 3.1.2), where T is a ob(V )-

tree of suitable type for the free operad, and each ew is in E(w). We can view a groupoid 
coloured tree monomial as an equivalence class of (discrete) coloured tree monomials (in 
the sense of Section 2.1 of [25]) under the action of the groupoid on the edges of the tree. 
A tree monomial has several natural degrees (conserved under this action)

• Its arity corresponds to its number of leaves.
• Its weight corresponds to the number of internal edges +1, or equivalently the number 

of constituent generators from E.

We say an element of a groupoid coloured operad is homogeneous with respect to a 
degree if it is a sum of groupoid coloured tree monomials with non-zero coefficients, all 
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with the same degree. Furthermore, we shall use FΣ(E)(k) to denote the weight k subset 
of FΣ(E).

We close this section by defining quotient operads, and what we mean by a quadratic 
presentation.

Definition 3.5.2 (2.5.2 [55]). Given two V (or VΣ)-modules A and I, we say I is a
submodule of A if it is a subcategory of A. If P is a groupoid coloured operad (of any 
type) and I ⊂ P a submodule of appropriate type, we say I is an ideal of P if the image 
of any of the contracting maps ηT of the operad (Definition 3.2.3) applied to a tensor 
with a factor of I lands back in I.

Definition 3.5.3. If I is an ideal of P , we may form a quotient operad P/I with the 
quotient V -module and the inherited structure maps. We say an operad P admits a
quadratic presentation if P ∼= FΣ(E)/R and R ⊂ FΣ(E)(2).

3.6. Koszul groupoid coloured operads

We now introduce what it means for a groupoid coloured operad to be Koszul using 
the theory of Ward [55], before providing an alternate characterisation through shuffle 
operads. We briefly recall the necessary definitions of groupoid coloured cooperads, and 
the bar/cobar complexes, before presenting four equivalent characterisations of when 
a groupoid coloured operad is Koszul (Definition 3.6.7). Through the theory of shuffle 
operads we will show that a groupoid coloured symmetric operad O is Koszul when its 
groupoid coloured shuffle operad Of is Koszul. This result will enable the Groebner basis 
machinery developed in Section 4.

3.6.1. Background: cooperads and bar/cobar complexes
We first recall some supporting theory of [55] regarding cooperads and bar/cobar 

complexes. All definitions in this section are presented for symmetric groupoid coloured 
operads, but they can be modified in obvious ways to obtain analogous definitions for 
non-symmetric and shuffle groupoid coloured operads.

Definition 3.6.1 (2.29 [55]). A symmetric groupoid coloured non-unital conilpotent co-
operad is a comonoid in the category of VΣ-modules with comonoidal product given in 
Section 2.4.1 of [55].

By the general theory of comonads, a cooperad admits a forgetful functor FΣ,c which 
maps to the underling VΣ-module, and this forgetful functor admits a left adjoint. This 
allows us to define cofree cooperads, which leads to the following definition of cooperads 
with a quadratic presentation.
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Definition 3.6.2 (2.5.3 [55]). Let R be a homogeneous quadratic ideal of FΣ,c(E), then we 
define a quadratic cooperad Q(E, R) as the union of all sub-cooperads of Q ⊂ FΣ,c(E)
such that the composite Q ↪→ FΣ,c(E) = FΣ(E) � FΣ,c(E)(2)/R vanishes.

A particularly important quadratic cooperad is the Koszul dual cooperad defined as 
follows.

Definition 3.6.3 (2.5.4 [55]). Let P ∼= FΣ(E)/R be a quadratic VΣ operad, then P ¡ :=
Q(sE, s2R).

Where s is the suspension operator in dgV ect. The suspension operator and its inverse 
s−1 are also used in the bar/cobar constructions. This familiar adjoint pair (see for 
instance [33] for the uncoloured case) extends naturally to groupoid coloured operads as 
follows.

Definition 3.6.4 (2.6.1 [55]). Let P be an operad, the bar construction of P is B(P ) :=
(Fc(sP ), ∂ + dP ), i.e. it is the cofree operad generated by the suspension of P whose 
differential is induced by the operadic composition of P (∂) and the differential of P
(dP ).

Definition 3.6.5 (2.6.2 [55]). Let Q be a conilpotent cooperad, the cobar construction of 
Q is Ω(Q) := (F (s−1Q), ∂ + dQ), i.e. it is the free operad generated by the desuspension 
of Q whose differential is induced by the cooperadic composition of Q (∂) and the 
differential of Q (dQ).

There is a natural grading on these complexes, which simplifies some theory for Koszul-
ness.

Definition 3.6.6. There is a natural grading on the bar (and cobar) complex called the
syzygy degree induced by the weight gradings of P and Fc(−). In particular, if a ∈
Fc(sP )(k) = F (sP )(k) then the syzygy degree of a is wP (a1) + ... + wP (ak) − k.

3.6.2. Koszul characterisations
We now present four equivalent definitions for when a quadratic groupoid coloured 

operad is Koszul, before making some comments and proving their equivalence.

Definition 3.6.7. A quadratic VΣ-operad P is Koszul if any of the following equivalent 
definitions hold,

(1) the inclusion ζP ¡ : P ¡ → B(P ) is a quasi-isomorphism.
(2) the composition Ω(P ¡) → Ω(B(P )) → P is a quasi-isomorphism.
(3) using the syzygy degree Hn(B(P )) = 0 for n ≥ 1.
(4) the Vsh-operad P f is Koszul.
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Analogous versions of the first three characterisations also hold for non-symmetric and 
shuffle groupoid coloured operads.

The first characterisation is Definition 2.45 of [55], and the remaining characterisations 
are ordered by their appearance in the proof below. For the purpose of this paper, the 
second and the fourth characterisation are the most useful. When P is Koszul we will 
denote P∞ := Ω(P ¡). By the second characterisation, P∞ is a model for P , which by 
construction is quadratic (and hence minimal). The fourth characterisation is precisely 
the reason we have developed the theory of groupoid coloured shuffle operads, and this is 
what will enable the theory of Groebner bases in the subsequent section. We note that [55]
has further characterisations of groupoid coloured operads, and many characterisations 
in the uncoloured case (see for instance 7.9.2 of [33]) admit natural generalisations.

The equivalence of (1) and (2) in Definition 3.6.7 is a consequence of the bar-cobar 
adjunction, see Lemma 2.44 of [55]. Then, (1) and (3) are equivalent in an obvious 
extension of the argument of Proposition 7.3.1 of [33], i.e. the inclusion ζP ¡ : P ¡ → B(P )
induces an isomorphism P ¡ ∼= H0(B(P )). Finally, (3) and (4) are equivalent through the 
following proposition.

Proposition 3.6.8 (Proposition 1.4 [15]). The symmetric bar complex of a groupoid 
coloured operad P is isomorphic, as a shuffle dg groupoid coloured cooperad, to the shuffle 
bar complex of P f , i.e. B(P )f ∼= B(P f ).

Proof. This proposition immediately extends to the groupoid coloured case as a conse-
quence of f being monoidal (Lemma 3.1.10). �

So,

B(P )f ∼= B(P f ) =⇒ ∀n,Hn(B(P )f ) ∼= Hn(B(P f ))

which tells us that,

Hn(B(P )) = 0 for n ≥ 1 ⇐⇒ Hn(B(P )f ) = 0 for n ≥ 1

⇐⇒ Hn(B(P f )) = 0 for n ≥ 1

So P is Koszul by Definition 3.6.7.(3), if and only if, P f is Koszul by Definition 3.6.7.(3).

4. Koszul groupoid coloured operads via Groebner bases

The theory of Groebner bases was first developed for (discrete one-coloured) operads 
in [14], extending upon the PBW bases of [22], as a useful tool for proving that specific 
operads are Koszul. In particular, Dotsenko and Khoroshkin proved that if an operad O
has a shuffle operad Of with a quadratic Groebner basis, then O is Koszul. This powerful 
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tool was extended to discrete coloured operads in [25], and is currently in the process 
of being extended to dioperads by Khoroshkin. In this section, we develop the theory of 
Groebner bases for groupoid coloured operads by proving the following theorem.

Theorem (4.2.13). Let P be a V -coloured operad such that the associated ob(V )-coloured 
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

We briefly revisit the theory of Groebner bases for discrete coloured operads ([2], [14], 
[22], and [25]) before extending the theory to groupoid coloured operads in Section 4.2. 
We then close this section by explicitly establishing a well known equivalence between 
confluent terminating rewriting systems and Groebner bases. This provides alternate 
methods for proving that a discrete coloured operad admits a Groebner basis. Later, we 
use techniques developed in this section to prove that the operads governing wheeled 
props (Section 5.5) and props (Section 6.5) are Koszul.

4.1. Divisibility, order and Groebner bases for discrete coloured shuffle operads

We start by recalling some necessary definitions and results.

Definition 4.1.1. Given a discrete coloured shuffle operad, a partial ordering ≤ of its 
underlying tree monomials is said to be admissible if

(α ≤ α′ and β ≤ β′) =⇒ α ◦ϕ β ≤ α′ ◦ϕ β′

where α, α′ and β, β′ are pairs of arity homogeneous tree monomials and ◦ϕ is a shuffle 
composition. If the order is also total (i.e. all tree monomials are comparable) then we 
will call it a total admissible order.

For the rest of this section, we assume all tree monomials are ordered by a total 
admissible order. Path lexicographic orders are an example of a total admissible order, 
and we will construct two such orders in this paper (5.4, 6.4), but see [14] for many 
additional examples. This total order on tree monomials allows us to identify the largest 
term with non-zero coefficients of any element of a given shuffle operad. For such an 
element f , we will denote the largest term by lt(f), and it’s coefficient by cf .

Definition 4.1.2. Given two tree monomials α and β, we say that α is divisible by β if 
there exists a subtree T ′ of α whose corresponding tree monomial is β. As α is divisible 
by β, a composite of elementary shuffle compositions and generators may be used to 
form α from β (Proposition 6 of [14]). This yields an operator in tree monomials mα,β

such that mα,β(β) = α.

Note that we can apply the operator mα,β to other tree monomials with the same 
shape as β. Furthermore, as we have a total admissible order ≤, it must be the case that 
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if γ < β then mα,β(γ) < mα,β(β) = α. Several examples of divisibility, and the induced 
operators, are provided in Example 4.3.5. With the preceding definitions, we can now 
define Groebner bases for discrete coloured shuffle operads.

Definition 4.1.3. Let Fsh(E) be a free discrete coloured shuffle operad, I an operadic 
ideal of Fsh(E), and G a system of arity homogeneous generators for I. We say G is
Groebner basis for I if, for all ideal elements f ∈ I, the leading term of f is divisible by 
the leading term of an element of G. We say G is quadratic if G ⊂ Fsh(E)(2).

This is certainly a definition, but we need a practical way to characterise when we 
have a Groebner basis. To this end, we first discuss reductions and S-polynomials.

Definition 4.1.4. If f, g are two arity homogeneous elements of Fsh(E) such that lt(f) is 
divisible by lt(g), then

rg(f) := f − cf
cg

mlt(f),lt(g)(g)

is called the reduction of f modulo g.

The total admissible order on tree monomials implies that lt(rg(f)) < lt(f), and in 
Section 4.3, we will interpret a reduction f → rg(f) as a rewrite of f to a smaller element. 
These reductions may be chained together to provide a unique normal form for every 
element of the discrete coloured shuffle operad through the following proposition.

Proposition 4.1.5 (Proposition 7 [14]). If G is a Groebner basis for I and f ∈ Fsh(E)
then there exists a unique element f̄ ∈ Fsh(E) such that

(i) f − f̄ ∈ I

(ii) f̄ is a linear combination of tree monomials which have no non-trivial reductions 
modulo G (i.e. for all g in G, every term of f̄ with a non-zero coefficient is not 
divisible by lt(g)). We denote this f ≡ f̄ mod G.

We say that f̄ is the unique normal form of f .

We now slightly extend the notion of a reduction by defining a S-polynomial.

Definition 4.1.6. We say that two tree monomials α, β have a common multiple if there 
exists a discrete coloured tree monomial γ such that γ is divisible by both α and β. 
We say that a common multiple is small if the corresponding subtrees of α and β in γ
overlap.
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Definition 4.1.7. Let f and g be two arity homogeneous elements of Fsh(E) whose leading 
terms admit a small common multiple γ. The S-polynomial corresponding to γ is defined 
by

sγ(f, g) := mγ,lt(f))(f) − cf
cg

mγ,lt(g))(g)

We can now give the following equivalent characterisations of Groebner bases for 
operads.

Proposition 4.1.8 (Theorem 1 [14]). The following are equivalent.

(1) G is a Groebner basis for I
(2) for all f ∈ I, f ≡ 0 mod G
(3) for all pairs of elements from G, all their S-polynomials (if defined) are congruent 

to 0 mod G.

In particular, the third characterisation means we can check we have a Groebner basis 
by a generalised version of Buchberger’s algorithm [14]. This means we can apply this 
algorithm to check that a discrete coloured operad is Koszul through the following result.

Proposition 4.1.9 (Theorem 3.12 [25]). A discrete coloured shuffle operad P with a 
quadratic Groebner basis is Koszul.

4.2. The groupoid coloured extension

We now extend these techniques to the groupoid coloured case. We point out that the 
constructions of this section will be clarified in Example 4.2.14.

4.2.1. Forgetting the action of the groupoid
We first show that the Koszulness of a V -coloured operad P is characterised by the 

Koszulness of an Ob(V )-coloured shuffle operad. We note that the arguments of this sec-
tion also apply to symmetric and non-symmetric operads with the obvious modifications 
to modules and operadic compositions.

Recall from Lemma 3.1.4, that the forgetful functor from VΣ-modules to V -modules is 
monoidal with respect to the symmetric operadic and shuffle operadic monoidal compo-
sitions (Definition 3.1.5). One consequence of this is that the bar complex of a groupoid 
coloured operad P , and its corresponding shuffle operad P f are isomorphic as groupoid 
coloured shuffle cooperads (Proposition 3.6.8),
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B(P f ) ∼= B(P )f .

This result allowed us to infer that P is Koszul, if, and only if, P f is Koszul (Defini-
tion 3.6.7). Thus, instead of studying the Koszulness of V -coloured symmetric operads, 
it is sufficient to study the Koszulness of V -coloured shuffle operads.

There also exists a forgetful functor −fV from V -modules to ob(V )-modules, which 
forgets the action of the groupoid. However, −fV is not monoidal. Despite this failure, 
we will show in Proposition 4.2.4, that there exists an epimorphism B(P fV ) � B(P )
of groupoid coloured shuffle cooperads. This epimorphism lets us infer one of the two 
directions.

Proposition 4.2.1. A V -coloured shuffle operad P is Koszul if P fV is Koszul.

Proof. The epimorphism B(P fV ) � B(P ) implies (using syzygy degree, Definition 3.6.6) 
that,

Hn(B(P fV )) = 0 for n ≥ 1 =⇒ Hn(B(P )) = 0 for n ≥ 1.

Hence by Definition 3.6.7, if P fV is Koszul then P is Koszul. �

The following epimorphism of groupoid coloured shuffle operads will not only let us 
construct B(P fV ) � B(P ), but will eventually lead to a simpler presentation of P fV in 
the next subsection. Recall that a morphism of groupoid coloured operads is a morphism 
of groupoid coloured modules, Definition 2.1.4, which is compatible with the operadic 
structure maps.

Definition 4.2.2. Let E be a V -coloured module. We define an epimorphism of groupoid 
coloured operads,

[−] : F ob(V )
sh (EfV ) � FV

sh(E).

The underlying map of groupoids is the inclusion [−]0 : ob(V ) ↪→ V . The map of groupoid 
coloured modules is defined on the basis elements of F ob(V )

sh (EfV ), and sends each ob(V )-
coloured tree monomial T to a V -coloured tree monomial by adding in the action of V
on the internal edges of T (Definition 3.5.1),

[T ] := [
⊗

w∈V t(T )

ew]Edges(T ).

Lemma 4.2.3. The quotient map [−] is indeed an epimorphism of groupoid coloured op-
erads.

Proof. We first observe that [−] (trivially) respects the trivial action of the groupoid 
ob(V ). Next, we observe that [α ◦ϕ β] = [α] ◦ϕ [β], as both sides of the equation have 
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the same action of V on the internal edge specified by the partial composition ◦ϕ. 
Finally, [−] must be an epimorphism, as the equivalence class corresponding to any 
groupoid coloured tree monomial in FV

sh(E) is represented by at least one non-groupoid 
coloured tree monomial in F ob(V )

sh (EfV ). (See Lemma 4.2.7 for one method of producing 
a particular representative.) �

Proposition 4.2.4. The quotient map [−] induces an epimorphism B(P fV ) � B(P ) of 
groupoid coloured shuffle cooperads.

Proof. As in the prior definition, the underlying map of groupoids is the inclusion 
ob(V ) ↪→ V . Now, recall from Definition 3.6.4, that given a groupoid coloured shuf-
fle operad P , its bar construction is B(P ) = (Fc(sP ), ∂ + dP ), where the differential dP

is the differential induced by the differential of P , and ∂ is the differential induced by 
the operadic composition of P . Furthermore, the underlying groupoid coloured modules 
of the cofree cooperad Fc(sP ) and F (sP ) are equal. Hence,

F ob(V )
c (sP fV ) = F ob(V )(sP fV ) � FV (sP ) = FV

c (sP ).

This composite, which we also denote [−] in a minor abuse of notation, respects the 
cooperadic structure, i.e. if we let �ob(V ) and �V denote the partial cooperadic products 
for F ob(V )

c (sP fV ) and FV
c (sP ) respectively, then ([−], [−]) ◦ �ob(V ) = �V ◦ [−]. This 

follows as, for α ∈ F
ob(V )
c (sP fV ), we observe that �ob(V )(α) ∈ �V ([α]).

Thus, to conclude the proof, we need only show that [−] commutes with the respective 
differentials. This is immediate for the differentials induced by the differential of P . For 
the ∂ (operadic) differentials, we recall from Section 2.6.1 of [55] that for a groupoid 
coloured operad Q, the differential ∂ of B(Q) is the unique extension of the following 
cooperad map.

Fc(sQ) Fc(sQ)(2) = F (sQ)(2) ∼= s2F (Q)(2) s2Q sQ

Where the first map is projection, the second is the operadic structure map, and the final 
is a shift in degree. Thus if we let ∂ob(V ) and ∂V denote the ∂ differentials of B(P fV )
and B(P ) respectively. Then the equation [−] ◦ ∂ob(V ) = ∂V ◦ [−], is witnessed by the 
commutativity of their inducing cooperad maps,

Fc(sP fV ) Fc(sP fV )(2) = F (sP fV )(2) ∼= s2F (P fV )(2) s2P fV sP fV

Fc(sP ) Fc(sP )(2) = F (sP )(2) ∼= s2F (P )(2) s2P sP

[−] [−]

Thus [−] is a morphism of groupoid coloured modules that also respects the shuffle co-
operadic structure, and hence is a morphism of groupoid coloured shuffle cooperads. �
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4.2.2. A simpler presentation
Given a quadratic V -coloured operad P we now seek a simple quadratic presen-

tation for P fV . Given we have an epimorphism of groupoid coloured operads [−] :
F

ob(V )
sh (EfV ) � FV

sh(E) (Definition 4.2.2). An analogue of the fundamental theorem 
of homomorphisms implies the composite [−]fV is an isomorphism of ob(V )-coloured 
shuffle operads,

F
ob(V )
sh (EfV )/〈Ker([−])〉 ∼= FV

sh(E)fV . (5)

Thus, we seek to characterise Ker([−]). Firstly, we show the kernel admits a quadratic 
presentation.

Definition 4.2.5. Let [−]2 be the restriction to weight two elements (Definition 3.5.1), 
[−]2 := [−]|(F ob(V)

sh )(2) .

By direct inspection,

Ker([−]2) = {α ◦φ β = α′ ◦φ′ β′ : α, β, α′, β′ ∈ EfV such that [α ◦φ β] = [α′ ◦φ′ β′]}.

Lemma 4.2.6.

〈Ker([−]2)〉 = 〈Ker([−])〉

Proof. Clearly 〈Ker([−]2)〉 ⊆ 〈Ker([−])〉. Conversely, by Definition 3.1.2, the action of 
[−]Edges(T ) is applied to each internal edge via an unordered tensor product. Thus, as 
Ker([−]2) encodes the action of a single internal edge, sequential applications of relations 
in Ker([−]2) encode the action across all internal edges. �

We now seek an explicit presentation of Ker([−]2).

Lemma 4.2.7. Let P be a V -coloured operad with a total order on its underlying ob(V )-
coloured tree monomials. Every V -coloured tree monomial T admits a unique minimal 
representative, which we denote T∗.

Proof. As Aut(v) is finite for all v ∈ ob(V ), every equivalence class T :=
[
⊗

w∈V t(T ) ew]Edges(T ) is finite. Therefore, as a total order on a finite set is a well-order, 
a unique minimal element exists. �

Remark 4.2.8. It is possible to define a total order on groupoid coloured tree monomials 
using Lemma 4.2.7. In particular, given two groupoid coloured tree monomials α, β we 
define α ≤ β if, and only if, α∗ ≤ β∗. One could then define an appropriate notion of an 
admissible order for groupoid coloured shuffle operads such that this order is admissible. 
From here, one could directly redevelop the entire theory of Groebner bases for groupoid 
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coloured shuffle operads. However, the entire point of this section is to circumvent the 
need to do this.

Corollary 4.2.9. This defines an injective map −∗ from V -coloured operads to ob(V )-
coloured operads.

Proof. Given a V -coloured operad P , every x ∈ P is of the form x =
∑

i kiTi, where 
each ki ∈ K and Ti is V -coloured tree monomial. Thus x∗ is given via linearisation, 
x∗ :=

∑
i ki(Ti)∗. The map is injective as the equivalence class of any groupoid coloured 

tree monomial can be reconstructed from any element. �

Remark 4.2.10. In general, −∗ will not be a morphism of groupoid coloured operads, as 
every morphism of the groupoid V is mapped to an identity morphism. Thus, if α is an 
element of a V -coloured operad which admits a non-trivial action of the groupoid V , i.e. 
α �= α · v, then (α · v)∗ �= α∗ · (v∗) = α∗ · id = α∗.

Lemma 4.2.11. If F ob(V )
sh (EfV ) is totally ordered, then 〈Ker([−]2)〉 = 〈E2

∗〉 where

E2
∗ := {α ◦ϕ β − [α ◦ϕ β]∗ : α, β ∈ EfV }.

Proof. By their respective definitions, it is clear that 〈E2
∗〉 ⊆ 〈Ker([−]2)〉. In the other 

direction, if α ◦ϕ β − α′ ◦ϕ′ β′ ∈ Ker([−]2), then it must be the case that α ◦ϕ β − [α ◦ϕ

β]∗, α′ ◦ϕ′ β′ − [α′ ◦ϕ′ β′]∗ ∈ E2
∗ with [α ◦ϕ β]∗ = [α′ ◦ϕ′ β′]∗, and hence 〈Ker([−]2)〉 ⊆

〈E2
∗〉. �

Thus, from Eq. (5), Lemma 4.2.6 and Lemma 4.2.11, we obtain the following simple 
presentation for P fV .

Corollary 4.2.12. Let P be a free V -coloured shuffle operad P = FV
sh(E). Then P fV is 

isomorphic as a ob(V )-coloured shuffle operad to,

P∗ := F
ob(V )
sh (EfV )/〈E2

∗〉.

Let P be a V -coloured shuffle operad with presentation P = FV
sh(E)/〈R〉. Then P fV is 

isomorphic as a ob(V )-coloured shuffle operad to,

P∗ := F
ob(V )
sh (EfV )/〈E2

∗ � R∗〉, where R∗ := {[r]∗ : r ∈ R}.

This corollary tells us we can translate the actions of the groupoid into an explicitly 
computable set of quadratic relations E2

∗ (other non-quadratic encodings of the action 
of the groupoid are possible such as the invertible unary maps of [3]).
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Theorem 4.2.13. Let P be a V -coloured operad such that the associated ob(V )-coloured 
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

Proof. If the ob(V )-coloured operad (P f )∗ admits a quadratic Groebner basis, then it is 
Koszul by Theorem 3.12 of [25]. This implies that P f is Koszul, through Proposition 4.2.1
and the isomorphism of (P f )∗ with (P f )fV given by Corollary 4.2.12. This implies that 
P is Koszul by Definition 3.6.7.(4). �

We will later use Theorem 4.2.13 to prove the operads governing wheeled props and 
props are Koszul (Sections 5.5, and 6.5). For now, we provide a more basic example, 
clarifying the constructions of this section.

Example 4.2.14. Let V be the groupoid with three objects a, b, c and a single non-identity 
isomorphism f : b → c, and its inverse f−1 : c → b. Let N be the non-symmetric ob(V )-
coloured module spanned by a single binary operation

N = N

(
c

b, c

)
= 〈 〉

Where we use a white/grey circle to denote a colouring by the object b/c respectively. 
Given these identifications, we represent the morphisms of V graphically, the isomor-
phism f : b → c is denoted , and its inverse f−1 : c → b is denoted . Let 
E be the free non-symmetric V -module generated by N . In particular, E contains 23

elements corresponding to the V -action on the generator’s three flags,

E = 〈 , , , , , , , 〉

Note that the object a ∈ ob(V ) does not appear in E, as a is disconnected from b and 
c in V . The ob(V )-coloured module EfV contains the same 23 elements, but forgets the 
underlying action of V . We now consider the ob(V )-coloured shuffle operad F ob(V )

sh (EfV ). 
In particular, we assume it admits a total admissible order and compute E2

∗ .

E2
∗ = 〈 ◦2 = ◦2 , ... , ◦2 = ◦2 ,



K. Stoeckl / Advances in Mathematics 454 (2024) 109869 31

◦1 = ◦1 , ... , ◦1 = ◦1 ,

◦1,(132) = ◦1,(132) , ... ,

◦1,(132) = ◦1,(132) 〉

Each row above contains 24 equalities corresponding to the (prior) free action of the 
groupoid on the external flags. Each equality corresponds to an action of V along an 
internal edge. We note that this example is particularly simple to compute, because the 
equivalence class corresponding to each groupoid coloured tree monomial with a single 
internal edge, contains exactly two elements. Thus, each equation in E2

∗ is independent 
of the rest, and contains the minimal representative [−]∗ with respect to any total ad-
missible order on F ob(V )

sh (EfV ). If we assume that,

◦1 ≤ ◦1 and ◦2 ≤ ◦2

(6)

Then the following relation r between groupoid coloured tree monomials in FV
sh(E)

(
c

b,c,c

)
,

r : ◦1 = ◦2

can be represented by the same pair of elements in F ob(V )
sh (EfV )

(
c

b,c,c

)
(i.e. in an abuse of 

notation r∗ = r). So, if R is the V -coloured module generated by r, i.e. it contains 24 basis 
elements corresponding to the free action of V on the external flags of r, then R∗ will 
also contain 24 elements computed similarly. So we have calculated the constituents of 
Corollary 4.2.12. In particular, if P := FV

sh(E)/〈R〉 then P fV ∼= P∗ := F
ob(V )
sh (EfV )/〈E2

∗�
R∗〉. Note in particular, that whilst P∗ has no notion of external actions of V , that all 
actions of V along internal edges are encoded through E2

∗ .
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Finally, consider the following four elements of the bar constructions B(P fV ).

α := , β := , γ := , δ :=

Here we denote,

• vertices of bar constructions via blue brackets, which are labelled with elements of 
P fV ,

• and internal edges of the operad P fV , and the cooperad B(P fV ), with , 
.

We observe through P fV ∼= P∗ and the relations of E∗, i.e. the left (ordered) relation of 
Eq. (6), that α and β are equal. We also observe that γ �= δ despite γ and δ just being 
refinements of α and β respectively. We now consider the epimorphism of groupoid 
coloured shuffle cooperads B(P fV ) � B(P ) of Proposition 4.2.4. We observe that not 
only do we have [α] = [β], but we also have [γ] = [δ], i.e. as P is a groupoid coloured 
module, we can push and pull on internal edges of B(−) through the action of V on P . 
So, it is straightforward to see in this particular example that �(α) ∈ �([α]) (as needed 
by Proposition 4.2.4).

Remark 4.2.15. We note it seems very likely that Groebner bases for dioperads could 
be extended to groupoid coloured dioperads by similar techniques to this section. In 
addition, it seems likely that the argument of this section could be adapted to prove 
that a (discrete) coloured operad is Koszul if its corresponding (one coloured discrete 
or) uncoloured operad is Koszul (see Proposition 1.15 of [25]). In particular, suppose 
we have a coloured operad P , and the forgetful functor −u from coloured operads to 
uncoloured operads, which forgets the underlying colouring. Then there seems to be an 
epimorphism of the bar complexes B(Pu) � B(P )u. However, whilst this moderately 
interesting, it is not computationally useful, as the Koszulness of coloured operads is 
already well understood.

4.3. Rewriting systems and Groebner bases

We close this section by showing how a basis G of an ideal of a discrete coloured 
shuffle operad defines a terminating rewriting system (RS), and relate the confluence of 
this system to G being a Groebner basis (Proposition 4.3.4). This connection is known, 
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and for instance, can be found for operads in Section 8 of [33], we simply state it concisely 
here, so we may use these confluence ideas to prove the operads governing props and 
wheeled props are Koszul. The following definitions are standard, and for instance can 
be found in [13].

Definition 4.3.1. A rewriting system (RS) is a binary relation → on a set T . The reflexive 
transitive closure of this relation is denoted →∗. We say a given RS is terminating, if 
there exists no endless chain t1 → t2 → t3 → ... of elements in the set T . We say that a 
point w ∈ T is,

• confluent, if for all x, y ∈ T such that w →∗ x and w →∗ y, there exists a z ∈ T such 
that x →∗ z and y →∗ z.

• locally confluent, if for all x, y ∈ T such that w → x and w → y, there exists a z ∈ T

such that x →∗ z and y →∗ z.

If either of these properties are true for all w ∈ T , then we say the RS itself is confluent, 
or locally confluent.

These properties admit the following renowned equivalence.

Proposition 4.3.2 (Diamond Lemma, [45]). A terminating RS is confluent if, and only 
if, it is locally confluent.

The confluence of the following terminating rewriting system associated to a basis of 
an ideal of a discrete coloured shuffle operad coincides with the basis being a Groebner 
basis.

Definition 4.3.3. Let G be a basis for an ideal of a discrete coloured shuffle operad which 
admits an admissible order on its shuffle tree monomials. We define the RS associated 
to G, say RS(G), to be the subset of Fsh(E)2,

RS(G) := {(f, rg(f)) : f ∈ Fsh(E), g ∈ G and lt(g) divides lt(f)}

Proposition 4.3.4. The following characterisations are equivalent.

(1) RS(G) is confluent.
(2) RS(G) is confluent on small common multiples of G.
(3) G is a Groebner basis.

Proof. The first condition clearly implies the second. The second condition implies the 
third, as if RS(G) is confluent on the small common multiples of G, then for any S-
polynomial of G, say sγ(f, g), the confluence forces sγ(f, g) ≡ 0 mod G. In particular, 
we have that,
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sγ(f, g) = mγ,lt(f)(f) − cf
cg

mγ,lt(g)(g)

= cf
cγ

((γ − cγ
cg

mγ,lt(g)(g)) − (γ − cγ
cf

mγ,lt(f)(f))

= cf
cγ

(rg(γ) − rf (γ))

→∗
cf
cγ

(γ′ − γ′) = 0

where, γ′ is given by the confluence of small common multiples. Finally, the third condi-
tion implies the first through the unique minimal form given by the Groebner basis. In 
particular, if G is a Groebner basis, then RS(G) is confluent as f →∗ f ′ and f →∗ f ′′, 
implies f ′, f ′′ →∗ f̄ . �

We note that the small common multiples must be a subset of the shuffle tree mono-
mials, so showing that all shuffle tree monomials are confluent is sufficient to show we 
have a Groebner basis. We will use this technique to prove that the operads governing 
props and wheeled props are Koszul. The more common technique for showing you have 
a Groebner basis (Buchberger’s algorithm, see for instance [14]), amounts to checking 
the local confluence of the small common multiples (through S-polynomials). Here is a 
closing example that illustrates the link between rewriting systems and Groebner bases.

Example 4.3.5 (See Example 10 of [14]). The associative operad admits the presentation,

P = FΣ(1 2)/〈1 2
3

−
1

2 3〉

The shuffle operad P f is calculated by taking the orbit of the generators and the relation. 
In particular, if we let f(1, 2) := 1 2 and f(2, 1) := 2 1 then because we are forgetting 
Σ we need to introduce a new generator to our shuffle operad h(1, 2) := f(2, 1). We then 
proceed through and orient the 3! orbit elements of our sole relation using h(1, 2) to 
replace f(2, 1).

f(f(1, 2), 3) − f(1, f(2, 3)) �→ f(f(1, 2), 3) − f(1, f(2, 3))

f(f(1, 3), 2) − f(1, f(3, 2)) �→ f(f(1, 3), 2) − f(1, h(2, 3))

f(f(2, 1), 3) − f(2, f(1, 3)) �→ f(h(1, 2), 3) − h(f(1, 3), 2)

f(f(2, 3), 1) − f(2, f(3, 1)) �→ h(1, f(2, 3)) − h(h(1, 3), 2)

f(f(3, 1), 2) − f(3, f(1, 2)) �→ f(h(1, 3), 2) − h(f(1, 2), 3)

f(f(3, 2), 1) − f(3, f(2, 1)) �→ h(1, h(2, 3)) − h(h(1, 2), 3)
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Hence, our shuffle operad is P f = Fsh(f, h)/〈G〉 where G is the six relations on the 
right. It turns out that there exists a total admissible order such that G is a (quadratic) 
Groebner basis. This Groebner basis admits many small common multiples with S-
polynomials witnessing their reduction. Here is one small common multiple whose two 
possible reduction paths generate the associative coherence pentagon.

1 2
3

4

1
2 3

4
1 2 3 4

1

2 3
4

1
2

3 4

In this example every single tree monomial except the bottom right corner is divisible 
by

lt(g) := lt( 1 2
3

-
1

2 3 ) = 1 2
3
, e.g. 

1

2 3
4

= 1 2 ◦2,id 1 2
3

Furthermore, each arrow corresponds to a reduction f �→ rg(f). The top tree monomial 
γ is a small common multiple as it is divisible by lt(g) in two different ways and the 
corresponding subtrees of the divisors overlap. We can calculate

sγ =
1

2 3

4

− 1 2 3 4

and the congruence of this S-polynomial to 0 witnesses that the two reductions of γ are 
(locally) confluent. Note, the unique normal form of all tree monomials in the diagram 
is the bottom right tree monomial.

5. The operad governing wheeled props

We now seek to define a groupoid coloured operad governing wheeled props, which we 
can show is Koszul, through use of the preceding theory. The main ingredient needed is a 
new biased definition of a wheeled prop (Definition 5.1.2), whose axioms, apart from the 
unital and biequivariance axioms, are all quadratic. By translating the biequivariance 
axioms into actions of a groupoid, we will define W to be a quadratic non-unital groupoid 
coloured operad whose algebras are non-unital wheeled props. We then prove this operad 
is Koszul, by constructing its shuffle operad, and applying the Groebner basis machinery.
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5.1. Wheeled props

We introduce our alternate definition of a wheeled prop, which is precisely Definition 
11.33 of [57] with all compositions and axioms extended via actions of the bimodule (see 
Section 2.1). We then prove its equivalence to the original definition, and define aug-
mented and non-unital versions of these structures. A key property of the new definition 
is that its equivariance axioms yield the following result.

Proposition 5.1.1. Every valid composite of operations in Definition 5.1.2 admits a sim-
ple canonical form, where all non-identity permutations are pushed to the outermost 
operation.

Proof. While we have an inner operation with non-identity permutations, use right com-
patibility to push the permutations off it and left compatibility to push them back on 
to the next operation. �

This not only allows us to simplify the remaining axioms, but also when we translate 
the equivariance axioms into actions of the groupoid, it will induce a simple canonical 
representative of every groupoid coloured tree monomial in W (see Example 5.2.1). We 
note that all definitions and diagrams referenced in the following definition are sourced 
from [57].

Definition 5.1.2. Let E be a symmetric monoidal category, a wheeled prop consists of 
the following.

(1) A bimodule P : P(C)op × P(C) → E .
(2) An extended horizontal composition,

P

(
d

c

)
⊗ P

(
b

a

)
⊗h,(σ

τ)−−−−→ P

(
σ(d, b)
(c, a)τ

)
,

where (⊗h, 
(
σ
τ

)
)(α, β) := ⊗h(α, β) ·

(
σ
τ

)
, with ⊗h(−, −) being the horizontal compo-

sition of 11.33.
(3) An extended contraction,

P

(
d

c

)
(εi

j ,(σ
τ))−−−−−→ P

(
σ(d \ di)
(c \ cj)τ

)
,

where (εij , 
(
σ
τ

)
)(α) := εij(α) ·

(
σ
τ

)
, with εij(−) being the contraction of 11.33.

(4) The same units as 11.33 (or to be consistent, they may be extended with trivial 
permutations).

In presenting the axioms, we assume all profiles, permutations and contraction indices 
are such that the diagrams make sense. Before each diagram, we cite the corresponding 
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diagram in [57]. We will not express the various extended unity diagrams (as we will 
quickly move to non-unital wheeled props) but the obvious extensions to (11.21 and 
11.33) are also present. The extended horizontal composition operation satisfies the fol-
lowing right, left and switch compatibility axioms. The right compatibility axiom is an 
immediate consequence of being a horizontal composition extended by an action of the 
bimodule. The left and switch compatibility axioms correspond to diagrams 11.19 and 
11.20.

P
(
d
c

)
⊗ P
(
b
a

)

P
(
σ(d,b)
(c,a)τ

)
P
(
σ′σ(d,b)
(c,a)ττ ′

)
(⊗h,

(σ
τ

)
)

(⊗h,
(σ′σ
ττ′
)
)

(σ′
τ′
)

P
(
d
c

)
⊗ P
(
b
a

)

P
(
σ1d
cτ1

)
⊗ P
(
σ2b
aτ2

)
P
(
σ(σ1d,σ2b)
(cτ1,aτ2)τ)

)
(σ1
τ1

)
⊗
(σ2
τ2

) (⊗h,
(σ(σ1×σ2)
(τ1×τ2)τ

)
)

(⊗h,
(σ
τ

)
)

P
(
b
a

)
⊗ P
(
d
c

)

P
(
d
c

)
⊗ P
(
b
a

)
P
(
σ(d,b)
(c,a)τ

)
switch

(⊗h,
(σ′
τ′
)
)

(⊗h,
(σ
τ

)
)

In the switch compatibility diagram, 
(
σ′

τ ′
)

is the unique permutation such that 
( σ(d,b)
(c,a)τ)

)
=

(σ′(b,d)
(a,c)τ ′

)
. The extended contraction operator satisfies the following left and right compat-

ibility axioms. The right compatibility axiom is an immediate consequence of being a 
contraction operation extended by an action of the bimodule, and the left compatibility 
axiom corresponds to (11.34).

P
(
d
c

)

P
(
σ(d\di)
(c\cj)τ

)
P
(
σ′σ(d\di)
(c\cj)ττ ′

)
(εi

j ,
(σ
τ

)
)

(εi
j ,
(σ′σ
ττ′
)
)

(σ′
τ′
)

P
(
d
c

)

P
(
σ′d
cτ ′
)

P
(σ(σ′ (i))(d\di)
(c\cj)(τ ′ (j))τ

)
(σ′
τ′
)

(εi
j ,
(σ(σ′ (i))
(τ′ (j))τ

)
)

(εσ′ −1(i)
τ′(j) ,

(σ
τ

)
)

In the left compatibility diagram σ′ (i) and τ ′ (j) are the obvious permutations acting on 
d \ di and c \ cj which are induced by the permutations σ′ and τ ′ (acting on d, c).

The language of Proposition 5.1.1 should now be clear, and we can use it to simplify 
the remaining diagrams (by pushing all permutations from the top/left arrows to the 
bottom/right arrows). We note that it is possible to encode the remaining diagrams 
entirely graphically (see Table 1). We will however write out the remaining axioms in 
full to make it clear they are precisely the axioms of [57] extended by an action of the 
bimodule. This helps to clarify that the definitions are indeed equivalent.

The associativity diagram of ⊗h (11.18)
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P
(
f
e

)
⊗ P
(
d
c

)
⊗ P
(
b
a

)
P
(
f,d
e,c

)
⊗ P
(
b
a

)

P
(
f
e

)
⊗ P
(
d,b
c,a

)
P
(σ(f,d,b)
(e,c,a)τ

)

(⊗h,
(id
id

)
)⊗id

id⊗(⊗h,
(id
id

)
) (⊗h,

(σ
τ

)
)

(⊗h,
(σ
τ

)
)

The commutativity diagrams of ε (11.35, 11.36). Suppose that |d|, |c| ≥ 2, di = cj and 
di′ = cj′ for some i �= i′ ≤ |d| and j �= j′ ≤ |c|. In the left diagram i < i′, j < j′, and in 
the right diagram i > i′, j < j′.

P
(
d
c

)
P
(
d\di

c\cj

)

P
(d\di′
c\cj′

)
P
(σ(d\{di,di′ })
(c\{cj ,cj′ })τ

)

(εi
j ,
(id
id

)
)

(εi′
j′ ,
(id
id

)
) (εi′−1

j′−1,
(σ
τ

)
)

(εi
j ,
(σ
τ

)
)

P
(
d
c

)
P
(
d\di

c\cj

)

P
(d\di′
c\cj′

)
P
(σ(d\{di,di′ })
(c\{cj ,cj′ })τ

)

(εi
j ,
(id
id

)
)

(εi′
j′ ,
(id
id

)
) (εi′

j′−1,
(σ
τ

)
)

(εi−1
j ,

(σ
τ

)
)

Note the right diagram has slightly altered indexing from 11.36, which uses i < i′ and 
j > j′ instead. This alteration arises from a later choice in Definition 5.4.1 where we 
choose to prioritise inputs over outputs, and making this (equivalent) alteration here 
slightly cleans up the relations.

The compatibility diagrams of ⊗h, ε (11.37, 11.38). In the left diagram i ≤ |d|, j ≤ |c|, 
and in the right diagram i ≤ |b|, j ≤ |a|

P
(
d
c

)
⊗ P
(
b
a

)
P
(
d,b
c,a

)

P
(
d\di

c\cj

)
⊗ P
(
b
a

)
P
(
σ(d\di,b)
(c\cj ,a)τ

)

(⊗h,
(id
id

)
)

(εi
j ,
(id
id

)
)⊗id (εi

j ,
(σ
τ

)
)

(⊗h,
(σ
τ

)
)

P
(
d
c

)
⊗ P
(
b
a

)
P
(
d,b
c,a

)

P
(
d
c

)
⊗ P
(
b\bi

a\aj

)
P
(
σ(d,b\bi)
(c,a\aj)τ

)

(⊗h,
(id
id

)
)

id⊗(εi
j ,
(id
id

)
) (ε|d|+i

|c|+j ,
(σ
τ

)
)

(⊗h,
(σ
τ

)
)

Lemma 5.1.3. Definition 5.1.2, and Definition 11.33 of [57] are equivalent definitions of 
wheeled props.

Proof. In presenting the alternate definition, we already established how the extended 
operations and axioms can be obtained from the original operations and axioms. We can 
similarly re-obtain the original operations and axioms from the alternate operations and 
axioms by taking specific cases of them. �

We will now refer to alternate wheeled props as wheeled props, but will continue to 
use alternate if we need to emphasise the use of this particular presentation. We now 
define augmented and non-unital versions of this definition.

Definition 5.1.4. Let K be the trivial wheeled prop in V ectK whose only constituents 
are the horizontal and vertical units, and the contractions of the vertical units (this is a 
technical requirement for wheeled props).
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Definition 5.1.5. An augmentation of a wheeled prop P in dgV ectK is a morphism (of 
wheeled props, see Corollary 11.36 of [57]) ε : P → K. Wheeled props with an augmen-
tation are called augmented wheeled props.

Definition 5.1.6. A non-unital wheeled prop consists of all the data of a wheeled prop, 
excluding the units and the corresponding axioms.

As one would expect, we have the following isomorphism.

Proposition 5.1.7. Augmented wheeled props and non-unital wheeled props are isomor-
phic.

Proof. This is a clear analogue of the classical result for partial operads, see Proposition 
21 of [34]. �

5.2. A groupoid coloured quadratic operad

We now produce a quadratic non-unital groupoid coloured operad W := F
S(C)
Σ (E)/〈R〉

whose algebras are non-unital wheeled props. After we have presented the generators of 
our operad, we will explore in Example 5.2.1 how the groupoid actions enable a simple 
canonical representative of each groupoid coloured tree monomial of FS(C)

Σ (E). Finally, 
we use this canonical form to provide a diagrammatic representation of the quadratic 
ideal R.

The underlying groupoid of our operad is S(C) := P(C)op × P(C), and the groupoid 
coloured module E (Definition 2.1.2) is constructed from the compositions of the wheeled 
prop as follows. Let 

(
b
a

)
, 
(
d
c

)
, 
(
f
e

)
∈ P(C)op × P(C), then,

E(
(
d

c

)
;
(
b

a

)
) :={(εij ,

(
σ

τ

)
)(−) : di = cj , and

(
σ(d \ {di})
(c \ {cj})τ

)
=
(
b

a

)
}

E(
(
d

c

)
,

(
b

a

)
;
(
f

e

)
) :={(⊗h,

(
σ

τ

)
)(−,−) :

(
σ(d, b)
(c, a)τ

)
=
(
f

e

)
}

where i ∈ {1, ..., |d|}, j ∈ {1, ..., |c|} and the 
(
τ
σ

)
’s are morphisms in P(C)op × P(C). The 

necessary left, right and Σ2 actions on ⊗h are directly given by the left, right and switch 
biequivariance/compatibility axioms of ⊗h (Definition 5.1.2). Similarly, the necessary left 
and right actions on ε are directly given by the left and right compatibility axioms of ε. 
The necessary Σ1 action on ε is the trivial action. To clarify by example, we now unpack 
the right action of ⊗h. Let (⊗h, 

(
σ
τ

)
) ∈ E(

(
d
c

)
, 
(
b
a

)
; 
(
f
e

)
) and 

(
σ′

τ ′
)

∈ IsoS(C)(
(
f
e

)
, 
(σ′f
eτ ′

)
)

then,

(⊗h,

(
σ

τ

)
)
(
σ′

τ ′

)
= (⊗h,

(
σ′σ
ττ ′

)
) ∈ E(

(
d

c

)
,

(
b

a

)
;
(
σ′f
eτ ′

)
)
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i.e. the bottom-left and diagonal path for the right compatibility diagram of ⊗h are equal 
(Definition 5.1.2).

We now provide an example of composition in this operad, and these actions.

Example 5.2.1. Suppose we have the following profiles,

px =
(

d1, d2
c1, c2, c3

)
, py =

(
c3
∅

)
, p =

(
d2, d1, c3
c2, c3, c1

)
, pγ =

(
d2, d1
c2, c1

)

then using the inline notation for permutations (here and in the rest of the paper)

(⊗h,

(
213
231

)
) ∈ E

(
p

px, py

)
and (ε3

2,

(
id

id

)
) ∈ E

(
pγ

p

)

We can compose these two generators to form a groupoid coloured tree monomial with 
at least two distinct representatives.

(ε3
2, 
(
id
id

)
) ◦1 (⊗h, 

(213
231
)
) = [

(ε3
2,
(
id
id

)
)

(⊗h,
(213
231
)
)

px py ] = [

(ε3
3,
(21
21
)
)

(⊗h,
(
id
id

)
)

px py ] ∈ E
(

pγ

px,py

)

We can explicitly compute that these two tree monomials are part of the same equivalence 
class as follows. The output edge of (⊗h, 

(213
231
)
) is coloured by the profile p (in this 

example). The identity morphism is an automorphism of p and splits as id = p 
(213
231)

−1

−−−−−→
p′ (213

231)−−−→ p ∈ Aut(p) where p′ =
(
d1,d2,c3
c1,c2,c3

)
. Hence by Eq. (3), contraction left action, and 

horizontal right action we have the following equalities.

[

(ε3
2,
(
id
id

)
)

(⊗h,
(213
231
)
)

px py ] id= [

(213
231
)

· (ε3
2,
(
id
id

)
)

(⊗h,
(213
231
)
) ·
(213
231
)−1

px py ] left+right actions= [

(ε3
3,
(21
21
)
)

(⊗h,
(
id
id

)
)

px py ]

By construction, every shuffle tree monomial of the operad can be seen as providing 
instructions for forming a wheeled graph via horizontal compositions and contractions. 
The fact that these two tree monomials are in the same equivalence class can be visually 
verified by seeing they provide two different ways of forming the following graph γ from 
two corollas ∗x and ∗y through different horizontal compositions and contractions. (Recall 
that all directed graphs in this paper are drawn with inputs on the bottom, and outputs 
on the top).
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∗x =

d1 d2

v1

c2c1 c3 , ∗y =

c3

v1
,

(⊗h,
(213
231
)
)

px py = 

d2 d1 c3

v1 v2

c2 c3 c1 , γ =

d2 d1

v1 v2

c2 c1

We note that the vertex labelling of γ (i.e. v1, v2), is encoded by the order of the inputs 
of the tree monomial, i.e. the corolla ∗x is labelled v1 and the corolla ∗y is labelled v2
because (ε3

2, 
(
id
id

)
) ◦1 (⊗h, 

(213
231
)
) ∈ E

(
pγ

px,py

)
. Thus, we can also interpret the symmetric 

action of the operad as switching the labels of the vertices. For example, here is the 
graphical interpretation of the Σ2 action on (⊗h, 

(213
231
)
) ∈ E

(
p

px,py

)
.

(⊗h,
(213
231
)
)

px py ·(21) =

d2 d1 c3

v1 v2

c2 c3 c1 ·(21) =

d2 d1 c3

v2 v1

c2 c3 c1 =

d2 d1 c3

v1 v2

c2 c3 c1 =

(⊗h,
(321
231
)
)

py px

Here the outermost tree monomials are equal under the definition of the Σ2 action. The inner equalities 
provide a graphical interpretation of this result, where the second equality uses the Σ2 action to switch 
the vertex labels, and the third equality is an equality of graphs (these graphs are indistinguishable 
under Definition 2.2.4). This example is also sufficient to illustrate that horizontal composition is not 
necessarily strictly commutative (see Proposition 7.0.2 for an important case when it is commutative), 
as

(⊗h,
(213
231
)
)

px py =

d2 d1 c3

v1 v2

c2 c3 c1 �=

d2 d1 c3

v2 v1

c2 c3 c1 =

(⊗h,
(213
231
)
)

px py ·(21).

Observe that in the prior example, the action of the groupoid was used to push all 
permutations to the top (i.e. the only non-identity permutation is that used by the 
generator at the root). This trick can be exploited to produce a canonical element of 
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the equivalence class of any groupoid coloured tree monomial, i.e. whilst there is a non-
identity permutation on a generator below the root, we use the action of the groupoid via 
the internal edge above it to push the permutation up the tree. So, the canonical element 
of any V -coloured tree monomial can be taken as the ob(V )-coloured tree monomial 
whose (potentially) only non-identity permutations are those at the root most generator.

The relations R of our operad W are given by the five remaining quadratic axioms of 
the alternate definition of a wheeled prop. These can be explicitly written out if desired, 
but we will use the canonical form to provide a concise graphical representation of the 
relations in Table 1 (see the souls of [4] for a similar graphical encoding of relations). Note, 
by construction this table precisely corresponds to the non-unital and non-biequivariance 
axioms of Definition 5.1.2. The table makes use of a suppressed notation, which we clarify 
by example. On the second row,

• The diagram (of the graph) represents a graph with two vertices in which one of the 
output flags of the first vertex is connected to one of the input flags of the first vertex, 
forming an edge. There are no other edges present in the graph, but there may be 
other flags (which are suppressed) and these flags may have an arbitrary listing in 
the graph (i.e. the graph may have any permutations of its inputs and outputs).

• The groupoid coloured tree monomials to the right are then taken under the implicit 
understanding that they output the graph on the left. Consequently, the profile of 
the ith input of the tree monomial must correspond to the profile of the ith vertex of 
the graph, see Example 5.2.1. (We are actually using a slightly abusive notation that 
we will clarify in Eq. (7)). The unary vertices of the tree monomials correspond to 
contractions, and the binary vertices correspond to horizontal compositions. There 
is no need to explicitly include the permutations or the indices used by these com-
positions. A canonical element of the equivalence class of each groupoid coloured 
tree monomial can be recovered by pushing all permutations to the top. From here, 
the necessary indices to contract by to form the edge are uniquely specified by the 
graph; similarly, the topmost permutations 

(
σ
τ

)
are uniquely determined by needing 

to match the listings of the open flags of the graph.

By the construction of this section, the following is immediate.

Corollary 5.2.2. A algebra over W is a non-unital wheeled prop.

5.3. The shuffle operad

So having defined a quadratic groupoid coloured operad governing wheeled props W , 
we must now prove that it is Koszul. We will do this by showing (W f )∗ admits a quadratic 
Groebner basis, but first we must calculate W f = (FS(C)

Σ (E)/〈R〉)f ∼= F
S(C)
sh (Ef )/〈Rf 〉. 

It may be helpful to review the calculation of −f in the (discrete) coloured case prior to 
stepping through this section, see for instance Section 2.6 of [25] or Example 4.3.5.
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Table 1
The relations of the operad governing wheeled props, and 
dually, the non-unital and non-biequivariance relations of an 
alternate wheeled prop.

Graphs Relations

v1 v2 v3 v1
v2 v3 = v1 v2

v3

v1 v2
v1

v2
= v1 v2

v1 v2 v1
v2 = v1 v2

v1 , v1
v1 = v1

We first observe how −f acts on the generators. Every unary generator has only a 
trivial orbit under Σ1. The binary generators have non-trivial orbits, however the Σ2
action on ⊗h sends every generator to another generator (see Example 5.2.1), so there 
is no need to introduce further generators to account for the orbits (this is comparable 
to the shuffle Lie operad only needing a single generator, see Example 9 of [14]). This 
tells us that Ef = E.

We now consider how −f acts on the relations, we do so by calculating the orbit or 
each relation of W then orienting each element of the orbit to use shuffle compositions. 
Let A be the first relation of Table 1 written down for a particular graph via the following 
notation, ⊗h(⊗h(∗v1 , ∗v2), ∗v3) = ⊗h(∗v1 , ⊗h(∗v2 , ∗v3)), where ∗vi

is the profile of the ith 
vertex of the graph. We now orient each element of the Σ3 orbit of A,

A · (123) �→ ⊗h(⊗h(∗v1 , ∗v2), ∗v3) · (123) = ⊗h(∗v1 ,⊗h(∗v2 , ∗v3)) · (123)

A · (132) �→ ⊗h(⊗h(∗v1 , ∗v2), ∗v3) · (132) = ⊗h(∗v1 ,⊗h(∗v3 , ∗v2)) · (123)

A · (213) �→ ⊗h(⊗h(∗v2 , ∗v1), ∗v3) · (123) = ⊗h(⊗h(∗v2 , ∗v2), ∗v3) · (132)

A · (231) �→ ⊗h(∗v3 ,⊗h(∗v1 , ∗v2)) · (123) = ⊗h(⊗h(∗v3 , ∗v2), ∗v1) · (132)

A · (312) �→ ⊗h(⊗h(∗v2 , ∗v1), ∗v3) · (132) = ⊗h(⊗h(∗v2 , ∗v3), ∗v1) · (123)

A · (321) �→ ⊗h(∗v3 ,⊗h(∗v2 , ∗v1)) · (123) = ⊗h(⊗h(∗v3 , ∗v2), ∗v1) · (123)

One might expect that every time we orient an element of the orbit we would obtain 
a new relation in the shuffle operad, however observe that the orientation of the orbit 
A · (321) is precisely A′ = ⊗h(⊗h(∗v′

1
, ∗v′

2
), ∗v′

3
) = ⊗h(∗v′

1
, ⊗h(∗v′

2
, ∗v′

3
)) where ∗v′

1
= ∗v3 , 

∗v′
2

= ∗v2 and ∗v′
3

= ∗v1 , so it is a redundant relation. In fact, it is straightforward 
to show that each orientation arises as a consequence of the following two families of 
equations (the families are all graphs of this form with all possible graph and vertex 
profiles)
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Table 2
The relations of the shuffle operad governing wheeled props.

Graphs Relations

v1 v2 v3 v1
v2 v3

1−→ v1 v2

v3
, v1 v3

v2
2−→ v1 v2

v3

v1 v2

v1

v2
3−→ v1 v2

v1 v2 v1
v2

4−→ v1 v2

v1 , v1
v1

5,6−−→ v1

v1 v2 v3
, 

v1
v2 v3 = v1 v2

v3

, v1 v3

v2

= v1 v2

v3

Here we have used the notation,

v1 v2

v3

:= ∗v1 ∗v2

∗v3

· (123), v1 v3

v2

:= ∗v1 ∗v3

∗v2

· (132) (7)

The permutation (132) is ensuring that the profile of the corolla ∗v3 (which is just a 
element of P(C)op × P(C) and has no notion of order with other profiles, see the end 
of Example 5.2.1) is the third input of the shuffle tree monomial. So, this orientation 
of the orbit has revealed a new way to form this graph with 3 vertices via shuffle tree 
monomials (given we have broken the symmetry). If we proceed to calculate the orbit 
of the remaining relations of the operad governing wheeled props (each with arity ≤ 2) 
then we will find that no new relations are required.

We once again encode the relations of the shuffle operad graphically in Table 2. This 
table uses the same conventions as Table 1, and the notation regarding shuffle permu-
tations defined in Eq. (7). Furthermore, each equation is now numbered for referencing 
and directed using a total order given in the next section, the larger element is on the 
left-hand side of each equation.

5.4. Ordering the object coloured tree monomials

In order to show that (Wf )∗ admits a Groebner basis, we must define a total admissible 
order on the underlying ob(S(C))-coloured tree monomials of the shuffle operad. In this 
section we define an order on the ob(S(C))-coloured tree monomials of Fsh(E) and show 
that this order is total and admissible. The order is a variant of a path lexicographic order 
of Section 3.2 of [14] (for extending path lexicographic orders to discrete coloured operads 
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see [25]), and although it looks complicated, we will show that it is a composite of simpler 
admissible orders. The underlying motivation for the order is that it provides a simple 
unique minimal shuffle tree monomial encoding any wheeled graph (Construction 5.5.2). 
As such, the key features of the order that the reader should observe are the following, 
the order prefers

• contractions being above horizontal compositions.
• horizontal compositions being composed to the left, i.e. ⊗h(⊗h(v1, v2), v3) <

⊗h(v1, ⊗h(v2, v3)).
• tree monomials whose inputs are ordered linearly, i.e. ⊗h(⊗h(v1, v2), v3) < ⊗h(⊗h(v1,

v3), v2).
• tree monomials where the only non-identity permutations used by a generator are 

at the root.
• contractions where larger input indices are used.

Here is the formal definition of our needed order, and we prove it is total and admissible 
in Lemma 5.4.4.

Definition 5.4.1 (Total Admissible Order). Let α, β be two tree monomials of Fsh(E), we 
define α ≤ β if:

(1) The arity of α < β.
(2) Or, if all the prior are equal, then compare Pα < P β where:

• if α and β have arity n then Pα := (Pα
1 , ..., Pα

n ), where Pα
i is the word formed 

out of the generators when stepping from the ith input to the root in the tree 
monomial α.

• Pα and P β are compared lexicographically. Two paths from the same input are 
compared
– First by degree, the longer path is smaller.
– Next by a partial lexicographic order where two generators are compared using 

the partial order ⊗h < ε (i.e. indices and permutations are ignored).
(3) Or, if all the prior are equal, then compare the input permutations of the shuffle tree 

monomials (not the permutations of the generators) via lexicographic order.
(4) Or, if all the prior are equal, then compare the permutations of all the generators as 

follows
• For a given generator s (e.g. (⊗h, 

(
σ
τ

)
) let p(s) be its permutations (e.g. 

p((⊗h, 
(
σ
τ

)
)) =

(
σ
τ

)
).

• For any given tree monomial there is a natural total order of its generators/ver-
tices, where any vertex with k vertices between it and the root is smaller than 
any vertex with j < k vertices between it and the root, and any two vertices at 
the same depth are ordered left to right using the planar embedding of the tree 
monomial.
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• We use this order and the map p to write out the permutations of all generators 
of each tree monomial as a single word (the letters correspond to 

(
σ
τ

)
).

• We compare the words lexicographically, where 
(
σ
τ

)
≤
(
σ′

τ ′
)

if σ < σ′, or σ = σ′

and τ < τ ′. Here, two individual permutations are compared lexicographically.
(5) Or, if all the prior are equal, then we again compare Pα < P β lexicographically, this 

time with a total order on generators.
• ⊗h < ε

• εij ≤ εi
′
j′ if j > j′, or j = j′ and i > i′.

• If the composition type is the same then the permutations are compared with, 
where we define 

(
σ
τ

)
≤
(
σ′

τ ′
)

if σ < σ′, or σ = σ′ and τ < τ ′

• if s and s′ are identical on all prior checks then compare their input colour(s) (left 
then right input if ⊗h) then their output colour. Input and output colours are 
profiles 

(
d
c

)
, 
(
b
a

)
∈ P(C)op × P(C), we say 

(
d
c

)
≤
(
b
a

)
if d < b, or d = b and c ≤ a. 

We compare two sequences of colours using a degree lexicographic order induced 
by a total order on C.

Remark 5.4.2. The assumption of having a total order on the underlying set of colours 
C (which is implied by the axiom of choice) could be relaxed. We can define the order of 
Definition 5.4.1 as a partial order, where we do not compare generators via their input 
and output colours. This order will still be total on the equivalence class corresponding 
to each groupoid coloured tree monomial, and will still enable the confluence of the 
rewriting system which is equivalent to the Groebner basis to be computed.

We note that several choices were made in the order, such as favouring inputs over 
outputs or larger indices over smaller indices. Alternate orders exist, and this particular 
order was constructed as it provides a simple unique minimal form.

Example 5.4.3. The following ordered tree monomials all output the graph depicted on 
the left.

d2 d1

v1 v2

c2 c1 , 

(ε3
3,
(21
21
)
)

(ε4
4,
(
id
id

)
)

(⊗h,
(
id
id

)
)

∗v1 ∗v2
5
≤

(ε3
3,
(21
21
)
)

(ε3
3,
(
id
id

)
)

(⊗h,
(
id
id

)
)

∗v1 ∗v2
4
≤

(ε3
3,
(
id
id

)
)

(ε4
4,
(213
213
)
)

(⊗h,
(
id
id

)
)

∗v1 ∗v2
2
≤

(ε3
3,
(21
21
)
)

(⊗h,
(
id
id

)
)

∗v1 (ε2
1,
(
id
id

)
)

∗v2

We have labelled each ≤ with the step of Definition 5.4.1 that orders each pair of tree 
monomials.
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Before we prove this order is admissible, we need a simple helper lemma.

Lemma 5.4.4. If ≤1, ≤2 are admissible orders, then the order ≤ defined by α ≤ β if 
α <1 β or α =1 β and α ≤2 β, is also admissible.

Proof. For all α, α′, β, β′ if α ≤ α′ and β ≤ β′ then each of the four possibilities (in 
terms of ≤1, ≤2) lead to α ◦ϕ β ≤ α′ ◦ϕ β′. �

With this result in hand, we now prove the following.

Lemma 5.4.5. The order of Definition 5.4.1 is total and admissible.

Proof. It is straightforward to see the order is total, as eventually the order compares 
all the data of the two shuffle tree monomials. It suffices to consider its admissibility. 
The comparisons of the order ≤ of steps 1 − 3 is a path lexicographic order of [14] and 
hence is an admissible (partial) order. We now argue that tacking on step 4 still results 
in admissible order. It is slightly easier to work with an alternate characterisation of 
admissibility,

∀α, α′, β, β′, (α ≤ α′ and β ≤ β′) =⇒ α ◦ϕ β ≤ α′ ◦ϕ β′

⇐⇒
(∀α, α′, β, α ≤ α′ =⇒ α ◦ϕ β ≤ α′ ◦ϕ β) and (∀α, β, β′ β ≤ β′ =⇒ α ◦ϕ β ≤ α ◦ϕ β′).

This variant of the definition allows us to vary one side of the composition at a time. 
Suppose that β ≤ β′, and we wish to show that α ◦ϕ β ≤ α ◦ϕ β′. Suppose that the first 
difference between β and β′ occurs as a result of step 4. That is to say the tree monomials 
β and β′ have the same underlying ‘shape’ (as unary binary trees) but when comparing 
the permutations of the generators (bottom to top, left to right), all permutations are 
equal until we reach some particular vertex pair which satisfies 

(
σ
τ

)
<
(
σ′

τ ′
)
.

As β and β′ have the same underlying ‘shape’ (as unary binary trees) this implies 
that α ◦ϕ β and α ◦ϕ β′ have the same underlying shape. As such, we can see that the 
order on the generators of β, β′ (bottom to top, left to right) will naturally inject into 
the order on the generators of α ◦ϕ β and α ◦ϕ β′. This means that the vertex pair of 
β, β′ causing 

(
σ
τ

)
<
(
σ′

τ ′
)

will also induce α ◦ϕ β < α ◦ϕ β′ via step 4 via the same vertex 
pair. A similar argument yields α ≤ α′ =⇒ α ◦ϕ β ≤ α′ ◦ϕ β.

Finally, to add in condition 5 of Definition 5.4.1, we first observe that performing 
the steps 1, 5, 3 in order is a path lexicographic order of [14], and hence is admissible. 
We then notice that performing steps 1 − 4 followed by steps 1, 5, 3 is just equivalent 
to performing steps 1 − 5 (i.e. performing steps 1 and 3 again provides no new order 
information). As such steps 1 − 5 are the composite of two admissible orders, and hence 
by Lemma 5.4.4, is also an admissible order. �
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We close this section by noting that, as observed in Section 4.2, we may use this 
total order on the underlying ob(S(C))-coloured tree monomials to order the relations 
of the groupoid coloured shuffle operad governing wheeled props. This induced order is 
precisely what has been used in Table 2.

5.5. The operad governing wheeled props is Koszul

This section is devoted to the proof that the groupoid coloured operad W is Koszul. 
In the prior section, we calculated an explicit presentation of the shuffle operad W f =
F

S(C)
sh (E)/〈Rf 〉. We now apply Theorem 4.2.13, to show that W is Koszul, if G is a 

quadratic Groebner basis for the ob(S(C))-coloured shuffle operad F ob(S(C))
sh (EfS(C))/〈G〉, 

where G := E2
∗ � (Rf )∗. We note that in our particular case that the relations of (Rf)∗

are precisely the pairs of canonical elements of the corresponding relations for the shuffle 
operad, and we will use i∗ to refer to the ‘groupoid minimised’ version of the ith relation 
in Table 2. We note that the relations of E2

∗ = {α ◦ϕ β → [α ◦ϕ β]∗ : α, β ∈ EfV } are 
all by definition directed towards the minimal element. As an explicit example, from 
Example 5.2.1, we see that (ε3

2, 
(
id
id

)
) ◦1 (⊗h, 

(213
231
)
) → (ε3

3, 
(21
21
)
) ◦1 (⊗h, 

(
id
id

)
) ∈ E2

∗ .

Lemma 5.5.1. Under the order of Definition 5.4.1, G is a quadratic Groebner basis for 
F

ob(S(C))
sh (EfS(C))/〈G〉.

Proof. We prove this lemma as follows.

• In Construction 5.5.2 we describe an algorithm that produces a unique minimal 
shuffle tree monomial encoding every graph. We show this algorithm is well-defined 
in Lemma 5.5.4.

• We then prove every shuffle tree monomial which is not the unique minimal shuffle 
tree monomial of a wheeled graph admits a rewrite using RS(G) (see Section 4.3), 
establishing the confluence of the rewriting system on all shuffle tree monomials. 
This is done in Lemma 5.5.5.

• Hence, through Proposition 4.3.4, this proves G is a Groebner basis. �

The remainder of this section outlines the construction and the two needed lemmas.

Construction 5.5.2. The following algorithm produces the unique smallest shuffle tree 
monomial encoding a wheeled graph γ with at least one vertex, we denote the outputted 
tree UMF�(γ).

• If γ has just one vertex then let T = v1, otherwise if γ has n > 1 vertices then let
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T =

(⊗h,
(
id
id

)
)

. . .

(⊗h,
(
id
id

)
)

(⊗h,
(
id
id

)
)

v1 v2

v3

. . .

vn

• Let γR = γ.
• While there is an edge in γR:

– Pick the edge e ∈ γR that uses the largest input in the graph outputted by T , and 
identify the necessary contraction indices (i, j) to form this edge (in the graph 
outputted by T ).

– Update T = (εij , 
(
id
id

)
)(T ).

– Remove the edge e from γR.
• If T is not a vertex, update the permutations of the root-most operation of T so that 

the corresponding graph outputted by T has the same ordering on its open flags as γ.
• Return T .

Example 5.5.3. For the graph γ in Example 5.4.3, UMF�(γ) is the smallest tree mono-
mial of that example.

Lemma 5.5.4. The unique minimal form algorithm of Construction 5.5.2 is well-defined.

Proof. It is straightforward to verify that this algorithm produces a (well-formed) shuffle 
tree monomial that produces the graph γ. We now verify that the algorithm produces 
the minimal shuffle tree encoding γ by verifying each of the enumerated conditions of 
Definition 5.4.1.

(1) Any tree monomial encoding a graph γ with n vertices must have arity n, so there 
is nothing to minimise here.

(2) The path from the 1st input to the root is minimal as it is of maximal degree (all 
generators are above it and there cannot be another tree forming the same graph 
with a different number of generators) and all contraction generators come after 
horizontal compositions. Similarly, we can verify that the path from the nth input 
to the root is minimal, conditional on all paths from smaller inputs being fixed.

(3) The inputs of the shuffle tree monomials have already been minimised by the prior 
condition.

(4) Having all identity permutations except for the final generator is clearly minimal.
(5) The contractions needed to form the graph γ were greedily added to the tree T by 

the algorithm by their largest inputs first, and εij < εi
′
j′ if j > j′. �



50 K. Stoeckl / Advances in Mathematics 454 (2024) 109869

Lemma 5.5.5. Let T be a shuffle tree monomial for a directed graph γ such that T �=
UMF�(γ). Then, T is rewritable by G.

Proof. Suppose that T is larger than UMF�(γ) as a result of not being normalised with 
respect to the action of the groupoid. Then there exists an internal edge of T which sits 
above a non-identity permutation. This internal edge defines a corresponding action of 
the groupoid which we can translate into an element of E2

∗ . This defines a corresponding 
rewrite (which will push the permutation up the tree). So given we have access to this 
rewrite for the remainder of this proof, we suppose that T is normalised with respect to 
the action of the groupoid.

Suppose that T is larger than UMF�(γ) as a result of having a contraction below a 
horizontal composition. Then T must have the form of the left-hand side of one of the 
following equations, and hence must admit the corresponding rewrite.

Tu

(⊗h,
(
σ
τ

)
)

(εi
j ,
(
id
id

)
)

T1

T2

3∗−→

Tu

(εi
j ,
(
σ
τ

)
)

(⊗h,
(
id
id

)
)

T1 T2 or 

Tu

(⊗h,
(
σ
τ

)
)

T1 (εi
j ,
(
id
id

)
)

T2
4∗−→

Tu

(εi+|d|
j+|c|,

(
σ
τ

)
)

(⊗h,
(
id
id

)
)

T1 T2

Here T1 and T2 are subtrees of T , Tu is the remainder of the tree T (close to root), in 
the case the second equation we also suppose that T1 outputs a graph with profile 

(
d
c

)
. 

We note that if Tu is not empty, then 
(
σ
τ

)
must be the identity permutations. Suppose 

that T is larger than UMF�(γ) as a result of having a horizontal composition appear in 
the right terminal of another horizontal composition, then T must admit the following 
form and rewrite.

Tu

(⊗h,
(
σ
τ

)
)

T1 (⊗h,
(
id
id

)
)

T2 T3
1∗−→

Tu

(⊗h,
(
σ
τ

)
)

(⊗h,
(
id
id

)
)

T1 T2

T3

Suppose that T has all generators on the path from the minimal vertex to the root, but 
has a different order of its inputs than UMF�(γ). Then T must admit the following 
form and rewrite.

T =

Tu

(⊗h,
(
σ
τ

)
)

(⊗h,
(
id
id

)
)

T1 cj

ci

2∗−→

Tu

(⊗h,
(
σ′

τ ′

)
)

(⊗h,
(
id
id

)
)

T1 ci

cj

Here i < j, and the alteration of 
(
σ
τ

)
to 
(
σ′

τ ′
)

is needed in general with this interchange 
of vertices. As T is a shuffle tree monomial, T1 must contain c1. Finally, suppose that 
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T is larger than UMF�(γ) as a result of using a different contraction sequence in the 
‘topmost’ vertical segment. This implies there must exist two adjacent contractions such 
that the lower contraction uses input index j, the higher contraction uses input index 
j′ − 1 and j < j′. Then T must admit either of the following forms and rewrites.

If i < i′

Tu

(εi′−1
j′−1,

(
σ
τ

)
)

(εi
j ,
(
id
id

)
)

T1 5∗−→

Tu

(εi
j ,
(
σ
τ

)
)

(εi′
j′ ,
(
id
id

)
)

T1 , if i > i′

Tu

(εi′
j′−1,

(
σ
τ

)
)

(εi
j ,
(
id
id

)
)

T1 6∗−→

Tu

(εi−1
j ,

(
σ
τ

)
)

(εi′
j′ ,
(
id
id

)
)

T1

We conclude this proof by noting that there are no further ways for T to be greater than 
UMF�(γ), hence either T = UMF�(γ) or T admits a rewrite. �

6. The operad governing props

We will now mirror the methodology of the preceding section to define a groupoid 
coloured operad P governing props. We then show this operad is Koszul (Section 6.5). 
We will assume that the reader has read (or is reading in parallel) Section 5, so that 
we may streamline identical proofs and focus on technical difficulties arising from the 
nature of props.

6.1. Props

We wish to define an alternate biased prop which will induce a nice definition of a 
quadratic groupoid coloured operad governing props. Such a definition is not as straight-
forward to produce as the alternate definition for wheeled props (Definition 5.1.2). As 
such, we first discuss the necessary features of an ‘alternate biased prop’, before present-
ing it (Definition 6.1.2) and proving it is equivalent to a standard definition of a prop 
(Definition 11.30 of [57], through Proposition 6.1.4). Finally, we will discuss non-unital 
and augmented variants of this definition.

Our alternate definition of a prop should use the same extended horizontal composition 
as the alternate wheeled prop (Definition 5.1.2), and then have some way to connect flags 
of graphs without the possibility of forming wheels. The standard vertical composition of 
props which connects all outputs of one graph to all inputs of another (see for instance 
Definition 11.30 of [57]) is not a good candidate for at least two reasons. Firstly, a 
non-unital version of such a prop would not be able to form graphs like the Bow graph.
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v1

v2

v3

This is similar to how a non-unital May operad, defined via γ : O(n) ×O(k1) ×...O(kn) →
O(k1+... +kn), is incapable of forming a partial operadic composition ◦i : O(n) ×O(k) →
O(n + k − 1) (see [34]). Secondly, props with the standard vertical composition satisfy 
the interchange axiom (11.26 of [57]) which is a ternary relation, and hence would not 
induce a quadratic presentation of our operad. As such, instead of seeking to modify 
vertical composition, we will instead define an extended properadic composition, which 
we now discuss the motivation for.

In [57] two biased definitions of properads are provided. The first, Definition 11.25, 
uses a properadic composition of the form

P

(
d

c

)
⊗ P

(
b

a

) �(c′
b′)−−−−→ P

(
b ◦b′ d

c ◦c′ a

)
(8)

This composition connects two graphs via contiguous k-segments c′ ⊂ c and b′ ⊂
b. By c′ is a contiguous k-segment of c (Definition 1.5 of [57]), we mean that 
c = (c1, ..., ci−1, c′, ci+k+1, ..., c|c|), and c ◦c′ a is syntactic sugar denoting c ◦c′ a :=
(c1, ..., ci−1, a, ci+k+1, ..., c|c|). The second definition of a properad in [57], Definition 
11.27, uses a properadic composition which is an extension of the prior.

P

(
d

c

)
⊗ P

(
b

a

) �(c′
b′),(σ

τ
)

−−−−−−→ P

(
σb ◦b′ d

cτ ◦c′ a

)
,

defined by,

α �(c′
b′),(σ

τ) β := (α ·
(
id

τ

)
) �(c′

b′) (β ·
(

σ

id

)
). (9)

This composition connects two graphs via the contiguous k-segments c′ ⊂ cτ and b′ ⊂
σb. This in effect allows the composition of two graphs via potentially dis-contiguous 
segments via first permuting the dis-contiguous segments into contiguous segments. In 
particular we could form any connected graph with two vertices γ, by first forming the 
internal edges of γ via Eq. (9), and then producing any listing of the remaining flags via 
an action of the bimodule. We will use the following diagram to represent the graph γ.

v1

v2
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Unfortunately, �(c′
b′),(σ

τ) satisfies inner biequivariance axioms (see Definition 11.27 of [57]) 
such as

v1

c1 c2

�(c1,c2
c1,c2

),(id

id
)

v1

c1 c2
=

v1

v2

= v1

c1 c2

�(c2,c1
c2,c1

),(21
21) v1

c1 c2

Hence, if we were to take this as our definition of properadic composition, then the 
operad governing props would satisfy unary relations. Thus, for any connected graph 
with two vertices γ, we wish to identify a unique way of forming γ from these vertices 
(with their specific listings, Definition 2.2.4). Or combinatorially, we wish to uniquely 
identify: an instance of Eq. (9) which forms the k connected edges of γ by connecting 
the potentially dis-contiguous k-segments c′ ⊆ c and b′ ⊆ b, subject to c′ = b′; and a 
pair of permutations which produces the specific listing of the remaining open inputs 
and outputs of γ.

• We assume c′ ⊆ c admits the reduced order of c, i.e. if ci, cj ∈ c′ and ci < cj in 
c, then ci < cj in c′. If this was not the case, then there exists a permutation σ
such that c′σ admits the reduced order, and we could proceed with this pair instead 
(clearly c′σ = b′σ).

• The properadic composition of Eq. (8), is defined whenever both c′ and b′ are con-
tiguous, thus we could apply any pair of permutations τ, σ such that cτ = (cl, c′, cr)
and σb = (bl, b′, br). Of these possibilities, we choose the unique permutations τ c

c′ , σ
b
b′

such that cτ c
c′ = (c′, c \ c′) and σb

b′b = (b′, b \ b′), i.e. we choose the unique permuta-
tions which pull the connecting segments to the left, and conserve the order of the 
remaining elements.

• Hence by the definition of ◦c′ below Eq. (8), cτ c
c′ ◦c′ a = (a, c \ c′) and σb

b′b ◦b′ d =
(d, b \ b′).

• Finally, there exist unique permutations 
(
σ
τ

)
producing any listing of the remaining 

inputs+outputs.

That is to say we identify our properadic composition as the composite,

P
(
d
c

)
⊗ P
(
b
a

)
P
(

d
c′,c\c′

)
⊗ P
(
b′,b\b′

a

)

P
(
d,b\b′

a,c\c′
)

P
(
σ(d,b\b′)
(a,c\c′)τ

)

( id
τ
c
c′

)
⊗
(σb

b′
id

)

◦(c′
b′
)
,
(
σ
τ

)

�(c′
b′
)

(σ
τ

)
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Note, in Definition 6.1.2, we do not define our composition to be equal to this compos-
ite, but rather alter the underlying biequivariance axioms so it behaves in this fashion 
(see Remark 6.1.5). We also note that other ways of producing a representative are pos-
sible, such as giving b′ the reduced order of b, or pulling the connecting segments to the 
right. We only care that there is a unique way to form each connected graph with two 
vertices via our defined composition. We illustrate this with the following example.

Example 6.1.1. Recalling that we use the line permutation notation, we compute

d1

v1

c2c1 c3 ◦(c1 ,c3
b3 ,b2

),(21
id
)

b1 b2 b3

v1

a1 = (

d1

v1

c2c1 c3 ·
(

id

132

)
) �(c1 ,c3

b3 ,b2
) (

b1 b2 b3

v1

a1 ·
(321

id

)
) ·
(21

id

)
=

b1 d1

v1

v2

a1 c2

We verify that there is a unique composite α◦(c′
b′),(σ

τ)β forming this graph γ. In particular:

• α must be the top vertex and β the lower (i.e inputs of α are connected to outputs 
of β);

• we identify the subset of flags c′ = {c1, c3} = {b3, b2} = b′ being connected by the 
properadic join;

• the listing of c′ = (c1, c3) is then determined by the listing of α, as c′ admits the 
reduced order of c (recall each vertex has specific listing data, Definition 2.2.4);

• the listing of c′ determines the listing of b′ = (b3, b2);
• this completely determines �(c′

b′),(σ
τ) = �(c1,c3

b3,b2
),(132

321); and

• the final permutation 
(
σ
τ

)
=
(21
id

)
is determined by the relative listing of γ to 

α �(c1,c3
b3,b2

),(132
321) β.

We now present our definition.

Definition 6.1.2. Let E be a symmetric monoidal category, a alternate prop P consists 
of the following.

(1) A bimodule P ∈ ES(C).
(2) An extended horizontal composition,

P

(
d

c

)
⊗ P

(
b

a

)
⊗h,(σ

τ)−−−−→ P

(
σ(d, b)
(c, a)τ

)
.
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(3) An alternate properadic composition,

P

(
d

c

)
⊗ P

(
b

a

) ◦(c′
b′),(σ

τ
)

−−−−−−→ P

(
σ(d, b \ b′)
(a, c \ c′)τ

)
,

where c′ ⊆ c, b′ ⊆ b, c′ = b′ and c′ admits the reduction of the order of c.
(4) An opposing alternate properadic composition defined by

◦̂(c′
b′),(σ

τ)(α, β) := ◦(c′
b′),(σ

τ)(β, α)

(5) Units for properadic and horizontal composition.

In situations where the permutations and indices are either arbitrary or clear, we will 
use ⊗h, ◦v and ◦̂v to refer to these compositions. The opposing extended properadic 
composition ◦̂v does not increase the expressive power of this definition of a prop, but 
rather exists to be paired off with ◦v under a Σ2-action in our latter definition of the 
operad governing props.

We now present the axioms satisfied by these compositions. We will not express the 
various unity diagrams (as we will quickly move to using a non-unital definition) but 
the obvious extensions to (Definitions 11.21 and 11.9 of [57]) are also present. We have 
the same biequivariance and associativity axioms of ⊗h as for wheeled props (Defini-
tion 5.1.2). The other compositions are right, left and switch biequivariant as follows, 
(the axioms for ◦̂v are obvious variants of ◦v)

P
(
d
c

)
⊗ P
(
b
a

)

P
(
σ(d,b)
(c,a)τ

)
P
(
σ′σ(d,b)
(c,a)ττ ′

)
◦(c′

b′
)
,
(
σ
τ

)
◦(c′

b′
)
,
(
σ′σ
ττ′
)

(σ′
τ′
)

P
(
d
c

)
⊗ P
(
b
a

)

P
(
σ1d
cτ1

)
⊗ P
(
σ2b
aτ2

)
P
(
σ(σ1d,σ2b\b′)
(aτ2,cτ1\c′)τ

)
(σ1
τ1

)
⊗
(σ2
τ2

)
◦(c′′

b′′
)
,
(
σ′
τ′
)

◦(c′
b′
)
,
(
σ
τ

)

P
(
d
c

)
⊗ P
(
b
a

)

P
(
b
a

)
⊗ P
(
d
c

)
P
(
σ(d,b\b′)
(a,c\c′)τ

)
switch

◦(c′
b′
)
,
(
σ
τ

)

◦̂(c′
b′
)
,
(
σ
τ

)

In the second diagram, if σc is the unique permutation that gives c′(τ−1|c′) the same 
reduced order as c, then c′′ := c′(τ−1|c′)σc, which by construction has the same reduced 
order as c. Then (in order to connect the exact same wires), we define b′′ := b′(τ−1|c′)σc. 
Notice that in general b′′ will be a dis-contiguous subset of b. Finally, in order to match 
permutations, we define σ′, τ ′ such that 

(σ(σ1d,σ2b\b′)
(aτ2,cτ1\c′)τ

)
=
(σ′(d,b\b′′)
(a,c\c′′)τ ′

)
. To place the dia-

grams in context, the left and right compatibility diagram encode similar information 
to the biequivariance diagram of Definition 11.27 of [57], and the switch diagram is the 
definition of ◦̂v restated in diagram form.
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With these axioms we can prove Proposition 6.1.3, and use it to simplify the remaining 
axioms. These include the four associativity diagrams of properadic composition, ex-
tended in the obvious way (see Definition 11.25 of [57]). We shall refer to these diagrams 
as the Caterpillar, Lighthouse, Fireworks and Bow diagrams following the conventions 
of [57] (sometimes abbreviated using the capitalised first letter where obvious). Finally, 
a new axiom regarding compatibility of ⊗h and ◦v is required, which we refer to as the 
Third-wheel.

These relations are encoded graphically in Table 3, however the interested reader may 
also find them explicitly written out in Section 8. This table uses the same notation 
as introduced in Table 1. In other words, each composite of operations is given under 
the implicit understanding that it is forming the graph on the left. As we may use 
the biequivariance axioms to push all permutations to the top (Proposition 6.1.3), this 
indicates that the permutations of the operations and the sub-profiles of any properadic 
joins are uniquely specified by the graph. As such, we may use a suppressed notation 
where we omit the permutations and the specific indices used by each binary operation.

As was the case for wheeled props (Proposition 5.1.1), the equivariance axioms yield 
the following.

Proposition 6.1.3. Every valid composite of operations in Definition 6.1.2 admits a sim-
ple canonical form, where all non-identity permutations are pushed to the outermost 
operation.

This result not only lets us simplify the other axioms of Definition 6.1.2, but it will 
also induce a simple canonical form for every groupoid coloured tree monomial in P
(Section 6.2). We now prove our definition is indeed a prop, by establishing equivalence 
with a known definition.

Proposition 6.1.4. Definition 6.1.2 and Definition 11.30 of [57] are equivalent definitions 
of props.

Proof. The equivalence of the underling operations is easy to establish. The vertical 
composition (which we denote) ◦V , and the horizontal composition ⊗h of Definition 11.30 
of [57], are particular instances of the extended compositions, i.e. ◦V : P

(
c
b

)
⊗ P
(
b
a

)
→

P
(
c
a

)
is equal to ◦(b

b),(id
id), and ⊗h = (⊗h, 

(
id
id

)
). In the other direction, the extended 

horizontal composition (⊗h, 
(
σ
τ

)
) can be obtained by ⊗h followed by an action of the 

bimodule (Section 2.1). The extended properadic composition can be obtained through 
the following commutative diagram,
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P
(
d
c

)
⊗ P
(
b
a

)
P
(
d,b\b′

c,b\b′
)
⊗ P
(
b,c\c′

a,c\c′
)

P
(

d,b\b′

c′,c\c′,b\b′
)
⊗ P
(
b′,c\c′,b\b′

a,c\c′
)

P
(d,b\b′

a,c\c′
)

P
(
d,b\b′

a,c\c′
)

P
(
σ(d,b\b′)
(a,c\c′)τ

)

pad with units

◦(c′
b′
)
,
(
σ
τ

)

(id
σ′
)
⊗
(τ′
id

)

◦V

remove dangling units

(σ
τ

)

where σ′, τ ′ are the unique permutations (outputting the target profiles) which move the 
connecting segments c′, b′ to the left (recall that c′ is ordered by c, and b′ by c′), and 
align the remaining flags with an identity.

The axioms of Definition 11.30 of [57] arise from the axioms of the alternate definition 
as follows

• The axioms regarding the extended horizontal composition can be restricted to the 
standard horizontal composition (associativity, biequivariance and unity).

• The axioms regarding the extended properadic composition can be restricted down 
to the vertical compositions (associativity, biequivariance and unity).

• The interchange axiom (11.26) is obtained as follows. As vertical composition is an 
instance of extended properadic composition, the interchange axiom corresponds to 
the following graph.

v1

v2

v3

v4

With this diagram as a guide we then apply a chain of axioms of our alter-
nate definition to reproduce the interchange axiom ⊗h(◦V (v1, v2), ◦V (v3, v4)) =
◦V (⊗h(v1, v3), ⊗h(v2, v4)). To aid readability, an underline is used to group anything 
that is treated as a ‘single variable’ by an equation.

◦V (⊗h(v1, v3),⊗h(v2, v4)) = ◦V (◦V (⊗h(v1, v3), v2), v4), (L)

= ◦V (⊗h(◦V (v1, v2), v3), v4), (T )

= ◦V (⊗h(v3, ◦V (v1, v2)), v4), (Bi-eq ⊗h)
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= ⊗h(◦V (v3, v4), ◦V (v1, v2)), (T )

= ⊗h(◦V (v1, v2), ◦V (v3, v4)), (Bi-eq ⊗h)

We have suppressed the permutations above, but there are non-identity permutations 
in the second to fourth line that for instance force the output flags of v1 to appear 
before the output flags of v3 and similar. The needed permutations are reverted to 
identities by the final biequivariance of ⊗h.

The axioms of our alternate definition of a prop arise from the axioms of Definition 11.30 
[57] as follows.

• The axioms which just involve horizontal composition arise as described in wheeled 
props (Definition 5.1.2).

• The biequivariance axioms of ◦v, ̂◦v arise from the biequivariance diagram of ◦V (Di-
agram 11.23 [57]). This is a straightforward but tedious exercise. Start with one side 
of the biequivariance diagram, and blow up ◦v using its ◦V commutative diagram de-
scription, then manipulate it into the other side through unit axioms, biequivariance 
axioms (of ◦V ), and actions of the bimodule.

• The caterpillar diagram arises from the associativity relation of vertical composition, 
as the extended properadic composition is defined from vertical composition (with 
appropriate padding with units).

• The third-wheel axiom arises from the interchange axiom and the vertical unit. The 
corresponding diagram illustrating this result is

v1

v2 v3
= 

v1

v2

I

v3
= 

v1

v2

v3

I

• The caterpillar axiom, the interchange axiom and vertical units can collectively be 
used to construct the lighthouse, fireworks and bow diagrams. Here is an outline of 
how the lighthouse axiom arises, and the others are similar. In the diagram below, 
the vertices labelled I denote any appropriate block of units.

v1

v2 v3
= 

v1

v2 I

I v3
= 

v1

I v3

v2 I
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Then the first equality of diagrams corresponds to,

◦v(v1,⊗h(v2, v3)) = ◦v(v1,⊗h(◦v(v2, I), ◦v(I, v3))) (Units)

= ◦v(v1, ◦v(⊗h(v2, I),⊗h(I, v3))) (Interchange)

= ◦v(◦v(v1,⊗h(v2, I)),⊗h(I, v3)) (Caterpillar)

= ◦v(◦v(v1, v2), v3) (unit)

and the third diagram can be interpreted similarly. �

Remark 6.1.5. The restriction of Definition 6.1.2 to just include the properadic compo-
sition and the connected axioms, also provides an equivalent definition of a coloured 
properad (Definition 11.7.2 of [57] is the closet analogue). This is a straightforward but 
tedious proof, so we only sketch the idea here. The connection between the properadic 
composition of Definition 6.1.2 and Definition 11.7.2 of [57] is given in the preamble of 
Section 6.1. By the “connected axioms” of Definition 6.1.2, we mean the Bow+Caterpil-
lar axioms, and the two relations of the Lighthouse+Fireworks axioms that only use the 
properadic compositions. Each of these axioms have their analogue in Definition 11.7.2 
of [57].

We now define augmented and non-unital versions of this definition, mirroring the 
corresponding section for wheeled props.

Definition 6.1.6. Let K be the trivial prop in V ectK whose only constituents are the 
vertical and horizontal units.

Definition 6.1.7. An augmentation of a prop P in dgV ectK is a morphism (of props, see 
Corollary 11.32 of [57]) ε : P → K. Props with an augmentation are called augmented 
props.

Definition 6.1.8. A non-unital alternate prop consists of all the data of an alternate prop, 
excluding the units and the corresponding axioms.

Proposition 6.1.9. Augmented alternate props and non-unital alternate props are isomor-
phic.

Proof. This is a clear analogue of the classical result for partial operads see Proposition 
21 of [34]. �

The last definition and isomorphism have only been presented for alternate props, 
and not Definition 11.30 of [57]. The non-unital version of Definition 11.30 of [57], is not 
isomorphic to an augmented prop. This follows from the bow graph counter example 
given in the preamble Section 6.1. More explicitly, we can observe that because the 
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standard vertical composition must connect all inputs of one graph with all outputs of 
another graph, the corresponding graphs of the non-unital version of Definition 11.30 of 
[57] will satisfy an additional convexity condition. This being, if two vertices u and v
are connected by an edge then there can by no other vertex w on a path between them. 
Thus, for the rest of the paper when we speak of a non-unital prop we mean a non-unital 
alternate prop.

6.2. A groupoid coloured quadratic presentation

We now produce a quadratic non-unital groupoid coloured operad P = F
S(C)
Σ (E)/〈R〉, 

whose algebras are non-unital props (mirroring Section 5.2). The underlying groupoid of 
our operad is S(C) := P(C)op × P(C). The generators E correspond to the compositions 
as follows, let 

(
b
a

)
, 
(
d
c

)
, 
(
f
e

)
∈ P(C)op × P(C) then

E(
(
d

c

)
,

(
b

a

)
;
(
f

e

)
) :={(⊗h,

(
σ

τ

)
)(−,−) :

(
σ(d, b)
(c, a)τ

)
=
(
f

e

)
}�

{◦(c′
b′),(σ

τ)(−,−) :
(
σ(d, b \ b′)
(a, c \ c′)τ

)
=
(
f

e

)
}�

{◦̂(a′
d′),(σ

τ)(−,−) :
(
σ(b, d \ d′)
(c, a \ a′)τ

)
=
(
f

e

)
}

The necessary left, right and Σ actions are then given by the biequivariance axioms of 
Definition 6.1.2 (note the biequivariance axioms for ⊗h are found in Definition 5.1.2). 
These groupoid actions once again provide a simple canonical form of every groupoid 
coloured tree monomial (where all permutations are pushed to the top) which enables 
us to encode the quadratic relations R graphically in Table 3. By construction, it follows 
that,

Corollary 6.2.1. Algebras over P are non-unital props.

6.3. The shuffle operad

In this section, we explicitly describe P f = (FS(C)
Σ (E)/R)f ∼= F

S(C)
sh (Ef )/Rf (mirror-

ing Section 5.3). We first observe how −f acts on the binary generators and their orbits. 
The generator ⊗h is handled as in Section 5.3, and as the other Σ2 actions map generators 
to generators, i.e. ◦(c′

b′),(σ
τ)(α, β) �→ ◦̂(c′

b′),(σ
τ)(β, α) and ◦̂(c′

b′),(σ
τ)(α, β) �→ ◦(c′

b′),(σ
τ)(β, α), we 

have no need to introduce further generators in our shuffle operad.
We now observe how −f acts on the relations by orienting each element of the orbit, of 

each relation of P , to use shuffle compositions. As each of our families of relations corre-
sponds to a given graph, we take the orbit of the relations corresponding to each graph. 
In the table below, the line γ ·p, e1 ← e2, e3 means: we take the relations corresponding to 
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Table 3
The relations of the operad governing props, and dually, the non-unital and non-biequivariance relations 
of an alternate prop.
Names Graphs Relations

Caterpillar

v1

v2

v3

◦v(◦v(v1, v2), v3) = ◦v(v1, ◦v(v2, v3))

Lighthouse
v1

v2 v3
◦v(◦v(v1, v2), v3) = ◦v(◦v(v1, v3), v2) = ◦v(v1, ⊗h(v2, v3))

Fireworks
v3

v1v2
◦v(⊗h(v1, v2), v3) = ◦v(v1, ◦v(v2, v3)) = ◦v(v2, ◦v(v1, v3))

Bow

v1

v2

v3

◦v(◦v(v1, v2), v3) = ◦v(v1, ◦v(v2, v3))

Third-wheel
v1

v2 v3

⊗h(◦v(v1, v2), v3) = ◦v(v1, ⊗h(v2, v3)) = ◦v(⊗h(v1, v3), v2)

Associativity ⊗h v1 v2 v3 ⊗h(⊗h(v1, v2), v3) = ⊗h(v1, ⊗h(v2, v3))

the graph γ and act on them via p (graphically this corresponds to switching the vertex 
labels of the graph) after we orient these relations as shuffle tree monomials we are left 
with e1 = e2 = e3, and e1 is the smallest shuffle tree monomial under an order introduced 
in the next section. However, as was the case in Section 5.3, we find that many orbit 
elements admit the same orientation. We will use the notation γ · p1, γ·p2, e1 ← e2, e3 to 
denote the orbit elements γ ·p1 and γ ·p2 being oriented into the same relations. We now 
list all 38 resulting directed relations of the shuffle operad.

This completes the presentation of the relations of the shuffle operad P f , these rela-
tions encode all the equivalent ways to form directed wheel-free graphs with 3 vertices 
via shuffle tree monomials.

6.4. Ordering the object coloured tree monomials

We now define a total admissible order on the underlying ob(S(C))-coloured tree 
monomials of Fsh(E). The motivation of this order as in Section 5.4 is to provide a 
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Table 4
The relations of the shuffle operad governing props.

Caterpillar:

v1

v2

v3

C·(123)
C·(132)
C·(213)
C·(231)
C·(312)
C·(321)

◦v(◦v(v1, v2), v3)← ◦v (v1, ◦v(v2, v3))

◦v(◦v(v1, v3), v2)← ◦v (v1, ◦̂v(v2, v3))

◦v(◦̂v(v1, v2), v3)←◦̂v(◦v(v1, v3), v2)

◦̂v(◦̂v(v1, v3), v2)←◦̂v(v1, ◦v(v2, v3))

◦̂v(◦v(v1, v2), v3)← ◦v (◦̂v(v1, v3), v2)

◦̂v(◦̂v(v1, v2), v3)←◦̂v(v1, ◦̂v(v2, v3))

Lighthouse:

v1

v2 v3

L·(123), L·(132)
L·(213), L·(231)
L·(312), L·(321)

◦v(◦v(v1, v2), v3)← ◦v (◦v(v1, v3), v2), ◦v(v1, ⊗h(v2, v3))

◦v(◦̂v(v1, v2), v3)←◦̂v(⊗h(v1, v3), v2), ◦̂v(v1, ◦v(v2, v3))

◦̂v(⊗h(v1, v2), v3)←◦̂v(◦̂v(v1, v3), v2), ◦̂v(v1, ◦̂v(v2, v3))

Fireworks:
v3

v1v2 F ·(123), F ·(213)
F ·(132), F ·(312)
F ·(231), F ·(321)

◦v(⊗h(v1, v2), v3)←◦̂v(◦v(v1, v3), v2), ◦v(v1, ◦v(v2, v3))

◦̂v(◦v(v1, v2), v3)←◦̂v(⊗h(v1, v3), v2), ◦v(v1, ◦̂v(v2, v3))

◦̂v(◦̂v(v1, v2), v3)←◦̂v(◦̂v(v1, v3), v2), ◦̂v(v1, ⊗h(v2, v3))

Bow:

v1

v2

v3

B·(123)
B·(132)
B·(213)
B·(231)
B·(312)
B·(321)

◦v(◦v(v1, v2), v3)← ◦v (v1, ◦v(v2, v3))

◦v(◦v(v1, v3), v2)← ◦v (v1, ◦̂v(v2, v3))

◦v(◦̂v(v1, v2), v3)←◦̂v(◦v(v1, v3), v2)

◦̂v(◦̂v(v1, v3), v2)←◦̂v(v1, ◦v(v2, v3))

◦̂v(◦v(v1, v2), v3)← ◦v (◦̂v(v1, v3), v2)

◦̂v(◦̂v(v1, v2), v3)←◦̂v(v1, ◦̂v(v2, v3))

Third-wheel:

v1

v2 v3

T ·(123)
T ·(132)
T ·(213)
T ·(231)
T ·(312)
T ·(321)

⊗h(◦v(v1, v2), v3)← ◦v (v1, ⊗h(v2, v3)), ◦v(⊗h(v1, v3), v2)

◦v(⊗h(v1, v2), v3)← ⊗h (◦v(v1, v3), v2), ◦v(v1, ⊗h(v2, v3))

⊗h(◦̂v(v1, v2), v3)←◦̂v(v1, ⊗h(v2, v3)), ◦̂v(⊗h(v1, v3), v2)

◦v(⊗h(v1, v2), v3)← ⊗h (v1, ◦v(v2, v3)), ◦̂v(⊗h(v1, v3), v2)

◦̂v(⊗h(v1, v2), v3)← ⊗h (◦̂v(v1, v3), v2), ◦̂v(v1, ⊗h(v2, v3))

◦̂v(⊗h(v1, v2), v3)← ⊗h (v1, ◦̂v(v2, v3)), ◦v(⊗h(v1, v3), v2)

Ass. of ⊗h: v1 v2 v3 A·(123), ..., A·(321) ⊗h(⊗h(v1, v2), v3)← ⊗h (⊗h(v1, v3), v2), ⊗h(v1, ⊗h(v2, v3))

simple unique minimal shuffle tree monomial encoding any wheel-free graph (Construc-
tion 6.5.2).

Definition 6.4.1. Let α, β be two tree monomials of Fsh(E), we define α ≤ β if:

(1) The arity of α < β

(2) Or, if all the prior are equal, then compare Pα < P β where
• if α and β have arity n then Pα := (Pα

1 , ..., Pα
n ), where Pα

i is the word formed 
out of the generators when stepping from the ith input to the root in the tree 
monomial α.

• Pα and P β are compared lexicographically, and two paths are compared only be 
degree (symbols ignored).

(3) Or, if all the prior are equal, then compare the input permutations (not the permu-
tations of the generators) of the shuffle tree monomials via lexicographic order.

(4) Or, if all the prior are equal, then compare the permutations of the generators with 
condition 4 of Definition 5.4.1.
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(5) Or, if all the prior are equal, then we again compare Pα < P β lexicographically, this 
time with a total order on generators.
• ⊗h < ◦v < ◦̂v

• if the composition type is the same then the permutations are compared with, (
σ
τ

)
≤
(
σ′

τ ′
)

if σ < σ′, or σ = σ′ and τ < τ ′

• if s and s′ are identical generators symbol wise then first compare their input 
colours left to right, then their output colour. Input and output colours are profiles (
d
c

)
, 
(
b
a

)
∈ P(C)op × P(C), we say 

(
d
c

)
≤
(
b
a

)
if d < b, or d = b and c ≤ a. We 

compare two sequences of colours using a degree lexicographic order induced by 
a total order on C.

Lemma 6.4.2. The order of Definition 6.4.1 is total and admissible.

Proof. A similar argument to Lemma 5.4.5. �

We close this section by noting that we may use this total order on the underlying 
ob(S(C))-coloured tree monomials to order the relations of P f by the minimal element in 
each groupoid coloured tree monomial, and this is precisely the order used in the prior 
section.

6.5. The operad governing props is Koszul

This section proves that the groupoid coloured operad governing props P is Koszul, 
before outlining how this construction can be modified to yield Koszul operads governing 
other similar operadic families. We shall use the same proof method as used for W
(in Section 5.5) with some minor combinatorial complications thrown in by the nature 
of props. In the prior section, we calculated an explicit presentation of the groupoid 
coloured shuffle operad P f = F

S(C)
sh (E)/〈Rf 〉. We now apply Theorem 4.2.13, to show 

that P is Koszul, if G is a quadratic Groebner basis for the ob(S(C))-coloured shuffle 
operad F ob(S(C))

sh (EfS(C))/〈G〉, where G := E2
∗ � (Rf )∗.

Lemma 6.5.1. Under the order of Definition 6.4.1, G is a quadratic Groebner basis for 
F

ob(S(C))
sh (EfS(C))/〈G〉.

Proof. We prove this lemma as follows.

• In Construction 6.5.2, we describe an algorithm that produces a unique minimal 
shuffle tree monomial encoding every wheel-free graph. We then show this algorithm 
is well-defined in Lemma 6.5.4.

• We then prove every shuffle tree monomial which is not the unique minimal shuf-
fle tree monomial admits a rewrite using RS(G) (see Section 4.3), establishing the 
confluence of the rewriting system on all shuffle tree monomials. This will be accom-
plished by Lemma 6.5.5.
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• Hence, through Proposition 4.3.4, this proves G is a Groebner basis. �

The main complication in this proof compared to wheeled props is the more compli-
cated unique minimal form, which we now detail, before giving an illustrative example 
(Example 6.5.3).

Construction 6.5.2. The following algorithm produces the unique smallest shuffle tree 
monomial encoding a directed cycle free graph γ with at least one vertex, we denote the 
outputted tree UMF↑(γ).

• Initiate T = ∗v, V = {v} and VR = V ertices(γ) \ {v} where v is the smallest vertex 
in γ.

• While there is a vertex in VR:
– Let v be the smallest vertex in VR such that there does not exist a directed path (in 

either direction) in γ between v and a vertex in V which passes through another 
vertex in VR. This can be partitioned into three cases,
(1) the vertex v is disconnected from V , so update T = (⊗h, 

(
id
id

)
)(T, ∗v)

(2) the input flags of a vertex in V are connected to the output flags of v, so 
T = (◦v, 

(
id
id

)
)(T, ∗v)

(3) the output flags of a vertex in V are connected to the input flags of v, so 
T = (◦̂v, 

(
id
id

)
)(T, ∗v)

The necessary segments of ◦v and ◦̂v may be identified from the graph γ and the 
graph outputted by T .

– Update V = V ∪ {v} and VR = VR \ {v}.
• Update the permutations of the root-most operation of T (if T is not a vertex) so 

that the corresponding graph outputted by T has the same ordering on its open flags 
as γ.

• Return T .

Example 6.5.3. The algorithm applied to the following graph γ yields,

v1

v3

v2 v4

⊗h

◦v

◦v

v1 v3

v2

v4

We note that there does not exist a shuffle tree monomial forming γ which contains 
⊗h(v1, v2) as a subtree (as we would need access to a composition ◦′(⊗h(v1, v2), v3)
which connects both inputs and outputs of both of its arguments). This illustrates why 
the restriction of the main loop of the algorithm is needed.
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Lemma 6.5.4. The unique minimal form algorithm of Construction 6.5.2 is well-defined.

Proof. It is straightforward to verify that this algorithm produces a shuffle tree monomial 
that produces the graph γ (note that T∗ is given the smallest vertex of the graph at 
initialisation, so all compositions used in the construction of T∗ are valid shuffle operadic 
compositions). It remains to verify that the algorithm produces the minimal shuffle tree 
encoding γ.

Firstly, we observe that the algorithm constructs a maximal length path from the 
minimal vertex to the root, i.e. our shuffle tree is ‘left aligned’. So given our shuffle tree 
monomial has this shape, we observe that maximising the length of the path from the 
next smallest vertex (and so on) is equivalent to minimising the shuffle tree monomial 
permutation (ordering of the vertices of the graph). Our algorithm does this by greedily 
picking the smallest ‘valid’ vertex. If the algorithm at any stage picked a smaller vertex 
by ignoring the restriction, then it would be impossible to form the graph γ from this 
subgraph γ∗, as illustrated in Example 6.5.3.

Finally, given our algorithm produces a left aligned shuffle tree monomial with a 
minimal shuffle tree permutation, this information uniquely determines the contents of 
each of the generators. Indeed, every generator of the shuffle tree monomial must perform 
a specific horizontal composition or properadic join over particular segments, and any 
permutations can be passed up and down the tree via the action of the groupoid. �

Lemma 6.5.5. Let T be a shuffle tree monomial for a direct cycle free graph γ such that 
T �= UMF↑(γ), then T is rewritable by G.

Proof. Suppose that T is larger than UMF↑(γ) as a result of not being normalised with 
respect to the action of the groupoid. Then there exists an internal edge of T which sits 
above a non-identity permutation. This internal edge defines a corresponding action of 
the groupoid which we can translate into an element of E2

∗ . This defines a corresponding 
rewrite (which will push the permutation up the tree). So given we have access to this 
rewrite for the remainder of this proof, we suppose that T is normalised with respect to 
the action of the groupoid.

Suppose that T is larger than UMF↑(γ) as a result of not having all generators on 
the path from the minimal vertex to the root (not being left aligned). Then T must have 
the following form

Tu

s1

T1 s2

T2 T3

where T1, T2, T3 are subtrees of T , Tu is the remainder of the tree T (close to the root), 
s1, s2 are arbitrary generators, and due to T being a shuffle tree monomial, the minimal 
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vertices of T1 < T2 < T3. Let T ′ = s1(T1, s2(T2, T3)) then the corresponding shuffle tree 
monomial of T ′ is s1(v1, s2(v2, v3)). This shuffle tree monomial describes how to form 
a graph with 3 vertices, and as T is normalised s1(v1, s2(v2, v3)) must be normalised. 
Observe that in the relations of P f whenever we have a shuffle tree monomial of the 
form s1(v1, s2(v2, v3)) forming a particular graph with 3 vertices, that it appears as the 
leading term of a directed equation. So let g be the corresponding directed equation with 
lt(g) = s1(v1, s2(v2, v3)), then T will admit a rewrite through the subtree T ′ to rg(T ).

Suppose that T has all generators on the path from the minimal vertex to the root, 
but has a different shuffle permutation to UMF↑(γ). It must be the case that T admits 
a decomposition of the form

T =

Tu

s2

s1

T1 vj

vi

where i < j and there does not exist a directed path from a vertex of T1 to vi that passes 
through vj , or a directed path from vi to a vertex of T1 that passes through vj (if such a 
decomposition didn’t exist then T = UMF↑(γ)). Here s1, s2 are arbitrary generators and 
T1 and Tu are the rest of the tree T . Let T ′ = s2(s1(T1, vj), vi) then the corresponding 
shuffle tree monomial of T ′ is s2(s1(v1, v3), v2). This (normalised) shuffle tree monomial 
describes how to form a graph with three vertices subject to the condition above. The 
only graphs with 3 vertices that do not meet the required condition are

v1

v3

v2

v2

v3

v1

v1

v3

v2

v2

v3

v1

which correspond to C · (132), C · (231), B · (132) and B · (231) in Table 4. Manually 
inspecting the other relations of P f , we observe that for every other graph with 3 vertices, 
that s2(s1(v1, v3), v2) only appears as the leading term of directed equations. So for the 
corresponding g with leading term s2(s1(v1, v3), v2), the tree T will admit a rewrite 
through the subtree T ′ to rg(T ). �

6.6. Applying these techniques to other operadic structures

The construction of this section can be easily specialised to provide Koszul operads 
governing di-ops (dioperadic composition + horizontal composition) or ops (operadic 
composition + horizontal composition). This follows from observing that dioperadic 
composition is an obvious restriction of properadic composition, and hence we can restrict 
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the alternate biased definition of a prop Definition 6.1.2 into alternate biased definitions 
of these structures (with the axioms restricted in the obvious ways). These new biased 
definitions then induce quadratic presentations of their operads. The restriction of the 
total order of Definition 6.4.1 then provides the exact same unique minimal shuffle tree 
monomials governing these (restricted) directed cycle free graphs as that provided by 
Construction 6.5.2. Then as non-minimal trees admit rewrites (Lemma 6.5.5) this proves 
the restricted operads are Koszul.

A less straightforward specialisation is the construction of a Koszul operad governing 
properads, here is a brief outline. The alternate biased definition of a prop with its hor-
izontal composition removed provides an alternate definition of a properad and hence 
a quadratic presentation of the operad governing properads (Remark 6.1.5). The corre-
sponding shuffle operad is an obvious restriction of the shuffle operad for props, with no 
third wheel, no associativity of ⊗h and no ways to form fireworks/lighthouse with ⊗h. 
If we apply the restriction of the total order of Definition 6.4.1, then we obtain a new 
unique minimal (properadic) shuffle tree monomial forming any connected directed cycle 
free graph. Then, proving that any non-minimal shuffle tree monomial admits a rewrite 
reproves (see Section 1) that the operad governing properads is Koszul. Dioperads and 
operads can then be obtained as a further specialisation of this construction.

We note that there is no easy way to specialise the construction of a Koszul op-
erad governing wheeled props into Koszul operads governing connected wheeled operadic 
structures, e.g. wheeled properads. This is because wheeled props form dioperadic joins 
by horizontal composition then contractions. The overall methodology of this paper 
however can still be applied starting from an alternate biased definition of a wheeled pr-
operad that uses extended dioperadic compositions and extended contractions. We don’t 
repeat this construction, as it is a known result (see Section 1). Other potential targets 
for the methods of this paper include disconnected/Schwarz modular operads [28], and 
multi-oriented props [36]. We note that [28] subsequently developed distributive rewrit-
ing techniques for groupoid coloured operads to prove the operad governing disconnected 
modular operads is Koszul. This distributive specialisation can also be used to study the 
operad governing wheeled props, but not the operad governing props, as ◦v and ⊗h are 
non-distributive (see for instance the lighthouse relation of Table 3).

7. Homotopy (wheeled) props

Given the operads W and P are Koszul (Definition 3.6.7), we immediately obtain the 
following corollary.

Corollary 7.0.1.

(1) W∞ := Ω(W ¡) is a (quadratic) minimal model for W .
(2) P∞ := Ω(P ¡) is a (quadratic) minimal model for P .
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As such, we define a homotopy (wheeled) prop to be a algebra over P∞ (respectively, 
W∞). This includes non-trivial examples such as,

• The homology of (wheeled) props, as shown in Section 7.2.
• The weakly vertically associative (wheeled) props of [56].
• The completions of virtual and welded tangles are examples of homotopy wheeled 

props ([11], [12]). These structures permit a topological characterisation of the 
Kashiwara-Vergne groups.

In this section, we unpack what it means to be a homotopy (wheeled) prop. We also show 
in Section 7.1, that we cannot use polytopes to describe these homotopy (wheeled) props, 
in a clear departure from the theory of connected operadic structures. Finally, we close 
this paper by exploring consequences of homotopy transfer theory on these structures 
(Section 7.2).

We first seek to understand the minimal models. The cobar construction (Defini-
tion 3.6.5) yields,

Ω(W ¡) = (F (s−1W
¡), d), Ω(P ¡) = (F (s−1P

¡), d)

where the differentials are given by the cooperadic expansion of the Koszul dual cooper-
ads W ¡ and P ¡. We now unpack what this entails for W∞, and similar reasoning works 
for P∞. The differential d of Ω(W ¡) will be induced by understanding how the coop-
eradic expansion into two pieces �(1) : W ¡ → W ¡ ⊗W ¡, also known as the infinitesimal 
decomposition, acts on the basis elements of W ¡. If μ ∈ W ¡, then we will denote the 
image of μ under the infinitesimal decomposition map by �(1)(μ) =

∑
(μ(1) ◦i μ(2))σ. 

Recall from Definition 3.6.3, that the Koszul dual cooperad W ¡ is universal amongst the 
sub-cooperads C of F c(sE) such that following composite is 0.

C F c(sE) = F (sE) F (sE)(2)/s2R

That is to say, W ¡(1) = E, W ¡(2) = R and higher degree elements of W ¡ are all in 
the ideal of R. A algebra over W∞ is a morphism of groupoid coloured operads ϕ :
W∞ → EndA. As such, a homotopy wheeled prop will be a family of graded vector 
spaces A

(
d
c

)
(d
c)∈P(C)op×P(C)

together with operations,

mγ : A
(
d1
c1

)
⊗ ... ⊗ A

(
dk

ck

)
→ A

(
d

c

)

where mγ = ϕ(μγ), and μγ is a basis element of W ¡. This tells us, each operation will be 
compatible with the groupoid P(C)op×P(C), i.e. they will admit left, right and Σk actions 
by translating across the actions of W . The decomposition �(1)(μγ) =

∑
(μγ1 ◦i μγ2)σ, 

will induce relations of the form
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∂A(mγ) =
∑

±(mγ1 ◦i mγ2)σ

In particular, we know that the following operations and relations will be present,

• There will be differentials, i.e. degree −1 operations d1 : A
(
d
c

)
→ A

(
d
c

)
such that 

d2
1 = 0.

• There will be degree 0 operations for each generator of the operad W that satisfy 
∂A(mγ) = 0.

• There will be operations of degree 1, witnessing that each relation holds up to ho-
motopy. Here is an example that illustrates a potential subtlety. For the operad P , 
this particular lighthouse graph witnesses the following relations.

v1

v2 v3
◦v(◦v(v1, v2), v3) = ◦v(◦v(v1, v3), v2) = ◦v(v1, ⊗h(v2, v3))

A basis for these relations are any two distinct pairs, for instance

◦v(◦v(v1, v2), v3)
r1= ◦v(◦v(v1, v3), v2),

◦v(◦v(v1, v2), v3)
r2= ◦v(v1,⊗h(v2, v3)) (10)

Under this choice of basis, the relations yield operators mr1 , mr2 : A
(
d1
c1

)
⊗ A
(
d2
c2

)
⊗

A
(
d3
c3

)
→ A

(
d
c

)
. In this example,

∂A(mr2) = me1 ◦1 me2 − me3 ◦2 me4

where e2 is the generator that performs ◦v(v1, v2) in the context of γ, and e1 is 
the generator that takes the output of e2 together with v3 and forms γ. Note that 
individually each mri

witness a homotopy between two terms, but together they 
witness homotopies between three terms.

We also stress that in these definitions of homotopy (wheeled) props, the action of the 
symmetric group remains strict. The effect this has on the definition is best understood 
through a simpler suboperad. Let 1 denote the discrete category with a single object. 
Let Com be the commutative operad (see for instance Section 13.1 of [33]), which can 
either be thought of as an uncoloured operad, or a 1-coloured operad. In addition, Com

is known to admit the quadratic presentation,

Com = F ( 1 2 = 2 1 )/〈 1 2
3 − 1

2 3 〉.

Proposition 7.0.2. The commutative operad is isomorphic to suboperads of both W and 
P .
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Proof. Observe that W (
(∅
∅
)
, 
(∅
∅
)
; 
(∅
∅
)
) and P (

(∅
∅
)
, 
(∅
∅
)
; 
(∅
∅
)
) only contain a single basis ele-

ment (⊗h, 
(
id∅
id∅

)
). We can graphically interpret this basis element as the graph with two 

vertices, neither of which has any inputs or outputs, and consequently the graph has 
no inputs or outputs. Furthermore, we can observe either directly from the biequivari-
ance axiom of horizontal composition (Definition 5.1.2), or from the following graphical 
argument, that the Σ2 action on (⊗h, 

(
id∅
id∅

)
) is trivial.

(⊗h, 
(
id∅
id∅

)
) · (21) =

v1 v2 ·(21) =
v2 v1

=
v1 v2

= (⊗h, 
(
id∅
id∅

)
).

Equality two follows as the action of the symmetric group on the graph switches the 
label of the two vertices, and equality three follows from the definition of a graph (Defi-
nition 2.2.1), see also Example 5.2.1.

Let H be the suboperad of both W and P generated by (⊗h, 
(
id∅
id∅

)
). We observe that 

H will satisfy the horizontal associativity relation (Row 1 of Table 1, or equivalently the 
horizontal associativity axiom of Definition 5.1.2), and will satisfy no further relations, 
as all other relations of W and P involve either contractions or properadic compositions. 
In addition, we observe that we no longer need to use the full groupoid S(C) := P(C)op×
P(C) to describe H but rather only ∅op×∅ which is a single object discrete category, and 
hence isomorphic to 1. Thus, the generating groupoid coloured modules of Com and H
are isomorphic (Definition 2.1.4), through the isomorphism of groupoids f0 : 1 → ∅op×∅, 
and the compatible bijective map of generators f1( ) := (⊗h, 

(
id∅
id∅

)
). Hence, Com and 

H are isomorphic as groupoid coloured operads.
We note that the graphical interpretation of the sole basis element in each H(

(∅
∅
)n

; 
(∅
∅
)
)

is the graph with n vertices, none of which have any inputs or outputs. This basis element 
has a trivial Σn action, as permuting the labels of these vertices will not produce a new 
graph (Definition 2.2.1). �

It is a classical result that the commutative operad is Koszul, and that its Koszul 
dual is Lie, i.e. Com¡ is the co-Lie cooperad. When we construct the minimal model of 
Com using the (uncoloured) Koszul machine C∞ := Ω(Com¡), the associativity relation 
is relaxed up to homotopy, and commutativity continues to hold strictly. As such, a 
C∞ algebra can be regarded as an A∞ algebra with the additional property that the 
operations are trivial on skew-symmetric shuffle products (see Proposition 13.1.6 of [33], 
and Example 3.134 of [41]). Explicitly, they satisfy relations such as:

m2(α, β) − (−1)|α||β|m2(β, α) = 0

m3(α, β, γ) − (−1)|α||β|m3(β, α, γ) + (−1)|α|(|β|+|γ|)m3(β, γ, α) = 0

m3(α, β, γ) − (−1)|β||γ|m3(α, γ, β) + (−1)(|α|+|β|)|γ|m3(γ, α, β) = 0.

Analogous relations hold in higher degree. The inclusion of Com into both W and P tells 
us these relations will hold (up to inclusion) in algebras over W∞ and P∞. Consequently, 
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these structure will satisfy appropriately generalised versions of the prior relations, once 
one accounts for the presence of the contraction operators for W , and the properadic 
compositions for P .

A ‘simple combinatorial model’ for homotopy (wheeled) props is beyond the scope of 
this paper. However, it is straightforward to perform low dimensional computations, as 
the following examples show. These calculations will also act as counter examples in the 
next section.

Example 7.0.3. Recall from Table 1, that in the operad W , the followings graphs encode 
relations in R = W ¡(2), and thus the corresponding infinitesimal decompositions.

Graph Encodes Relation r 
(1)(r)

v1 v2
v1

v2 −
v1 v2

= 0 ◦1 − ◦1

v1

v1

−
v1

= 0 ◦1 - ◦1

We use the graph γ = v1 v2 , to encode α − β ∈ W ¡, where α, β are any two 

elements of

v1

v2 = v1 v2 = v1 v2

We calculate,

�(1)( v1 v2 ) = ± v1 ◦1 v1 v2 ± v1 ◦1 v1 v2

The first term arises from cutting the first two tree monomials under the blue1 unary 
contraction, the second term arises from cutting the last two terms under the contrac-
tions/(above the binary fork). Encoding successive calculations via diagram, we compute 
the subcomplex generated by α − β,

1 For interpretation of the references to color please refer to the web version of this article.
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v1 v2

v1 ◦1 v1 v2 v1 ◦1 v1 v2

v1 ◦1 ( v1 ◦1 v1 v2 ) v1 ◦1 ( v1 ◦1 v1 v2 ) v1 ◦1 ( v1 v2 ◦1 v1 )

0

Where the image of the infinitesimal decomposition of a particular term (up to signs), 
is given by the target of all arrows whose source is that term. Note the bracketing on 
the third line can be rearranged using the associativity of operadic composition. We 
emphasise:

The bargraph v1 v2 never appears in the diagram, as it encodes no relation in W ¡.

Example 7.0.4. Let red and blue lighthouse graphs, provide a graphical encoding of our 
choice of basis for the lighthouse relations,

v1

v2 v3

v1

v2 ◦1

v1

v2 = (

v1

v2 ◦1

v1

v2 ) · (132)

v1

v2 v3

v1

v2 ◦1

v1

v2 =

v1

v2 ◦2
v1 v2

In terms of Eq. (10), the red relation is r1, and the blue relation is r2. Then, let 
α − β ∈ P ¡(3), be any two terms of P which generate the following graph.

v1

v2

v3 v4
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We partially compute a portion of the subcomplex generated by α − β, using the 
notation of the prior example. We have omitted many elements of the subcomplex for 
brevity.

v1

v2

v3 v4

v1

v2

◦2
v1

v2 v3

v1

v2

◦2
v1

v2 v3

v1

v2

v3

◦2
v1

v2

v1

v2

◦2(
v1

v2

◦1
v1

v2

)

0

7.1. Nesting models and polytope based techniques

The minimal models of the Koszul operads governing connected operadic structures 
all have polytope based interpretations ([4], [27], [29], [55]), however this no longer holds 
true for (wheeled) props.

Theorem 7.1.1. There exist subcomplexes of W∞ and P∞ which are not isomorphic as 
lattices, to the face poset of convex polytopes.

Proof. A necessary condition for a lattice to be the face poset of a convex polytope is 
that it meets the diamond condition (Theorem 2.7 [58]). That is to say, every interval of 
length two has precisely four elements, and thus looks like a diamond. Consequently, the 
diagrams of Examples 7.0.3 and 7.0.4, cannot be isomorphic as lattices, to the face posets 
of convex polytopes. This follows for W∞, as Example 7.0.3 has an interval of length two 
which contain only three elements. For P∞, we observe that Example 7.0.4 contains an 
interval of length 2 which has at least five elements. If another of the 

( 3
2,1
)

bases for the 
lighthouse relation is chosen (instead of Eq. (10)), then a similar counter example will 
be obtained. This is because every possible basis pair contains an overlapping term. �
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As W∞ and P∞ are the minimal models for W and P , these obstructions in homology 
will be present in all models for these operads. Consequently, there does not exist a 
polytope based nesting model for the operads governing (wheeled) props (see Section 4 
of [29], for what this means for the operad governing operads).

Remark 7.1.2. The fact that these nesting complexes are not isomorphic to the face poset 
of convex polytopes can be interpreted as obstructions to using the techniques of [4] and 
[27] to prove that the operads governing (wheeled) props are Koszul. These papers use 
polytopes to prove these results, explicitly though the hypergraph polytopes of [5] in the 
first case, and implicitly through cubical Feynman categories in the second case.

Another way to see how this obstruction manifests, specifically for cubical Feynman 
categories, is as follows. By Definition 7.4 of [26], given the definition of W , the bar 
graph should have degree 2, and as such, should admit a free Σ2 action on all the ways 
to form the graph. However, there is only one way to form the bar graph, a horizontal 
composition followed by a contraction, so no such action can exist. Similarly, given the 
definition of P , the lighthouse graph should have degree 2 for this operad, and have 
exactly two ways to form it, when we know there are three. The lighthouse graph was 
previously identified as an impediment to the existence of a cubical Feynman category 
for props in Figure 10. of [26].

Remark 7.1.3. Properads may be seen as props restricted to connected graphs. As out-
lined in Remark 6.1.5 and Section 6.6, the Koszul groupoid coloured quadratic operad 
governing properads P c (c for connected), consists of just the properadic generators of 
P and its associated connected axioms. Given the work of [4], [5] and [27], it is known 
that P c has a polytope based nesting model, as a result of more general theory. How-
ever, it is possible to show that the specific polytope based nesting model for properads 
corresponds to the poset associahedra of Galashin [18]. This is a useful observation, as 
given the recent realisations of poset associahedra as convex polytopes, performed in [39]
and [49], it is now possible to carry out the program of [29], at the level of properads. 
That is to say, one can define a minimal model for the operad governing properads whose 
groupoid coloured module consists of connected wheel-free graphs with an acyclic tubing, 
and whose operadic composition is given by substitution of nested/tubed graphs, e.g.

v1

v2

v3

v4 ◦4

v1

v2

v3

v2

v3 v1

=

v1

v2

v3

v5

v6 v4

Then, by mirroring Section 4 of [29], it is possible to use this minimal model, and the 
realisation of the polytopes, to provide an explicit functorial tensor product of homotopy 
properads. This is a subject for future research.
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7.2. Homotopy transfer theory

One of the main motivations for constructing Koszul operads governing (wheeled) 
props is to extend homotopy transfer theory (HTT) to these structures. We recall the 
necessary theory developed by Ward [55] in the groupoid coloured case, before deriving 
consequences in formality theory, and recovering a theorem of Mac Lane [37] as an 
instance of HTT.

Definition 7.2.1 (Definition 2.56 [55]). Let A, B be V -modules (in dgV ect). We say B is 
a homotopy (deformation) retract of A, if there are a family of homotopy (deformation) 
retracts indexed by ob(V ) such that hv, iv, pv are Aut(v)-equivariant.

A(v) B(v)
pv

hv

iv

See for instance [33] Section 1.5.5, for the definition of a homotopy/deformation retract.

As we are operating over a field of characteristic 0, a fundamental example is

Proposition 7.2.2 (Lemma 2.57 [55]). For a given V -module A, the homology H(A) is a 
deformation retract of A.

From here Ward specialises HTT to this particular deformation retract, but as he 
points out in his proof of Theorem 2.58, the only new requirement of his extension over 
the uncoloured case of [33] is the equivariance of the retract.

Proposition 7.2.3 (Generalising Theorem 2.58 [55], and Theorem 10.3.1 of [33]). Let P
be a Koszul groupoid coloured operad and A, B be V -modules such that B is a homotopy 
retract of A. Then any P∞-algebra structure on A can be transferred into a P∞-algebra 
structure on B such that i extends into a ∞-quasi-isomorphism.

Proof. Ward’s specialised proof works with these slightly more general assumptions. The 
structure maps are then obvious alterations of those in the uncoloured case see Section 
10.3 of [33], i.e. the formulae work for groupoid coloured trees given the equivariance of 
the retract. �

Ward’s specialisation to homology is then summarised in the following corollary.

Corollary 7.2.4 (Theorem 2.58 [55]). Let P be a Koszul groupoid coloured operad, and A
a dg algebra over P . The homology H(A) admits the structure of a P∞ algebra, and the 
inclusion i : A → H(A) extends to a ∞-quasi-isomorphism.

The higher P∞ operations on the homology are known as Massey products. The 
existence of Massey products has applications in formality.
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Definition 7.2.5 (Section 11.46 [33]). A dg-algebra A over a Koszul groupoid coloured 
operad P is said to be formal if there exists a ∞-quasi-isomorphism of dg-P -algebras 
between it and its homology H(A).

From this definition, it follows that a necessary condition for a dg-algebra to be 
formal, is for its Massey products to vanish uniformly ([10]). (If the Massey products do 
not vanish uniformly, then the best we could hope for would be a ∞-quasi-isomorphism 
of dg-P∞-algebras.) In addition, given our assumptions, we also have the following result.

Proposition 7.2.6 (Proposition 11.4.10 [33]). Let P be a Koszul groupoid coloured operad 
and A a dg-P -algebra. If the Massey products on H(A) vanish, then A is formal.

Proof. Using the extensions of Ward, the proof of [33] applies verbatim to the groupoid 
coloured case. �

So, as a consequence of these results and the constructions of this paper, we have the 
following two results for dg (wheeled) props over a field of characteristic 0.

Corollary 7.2.7. The homology of a (wheeled) prop admits Massey products.

Corollary 7.2.8. Thus, if P is a dg (wheeled) prop and A a dg-P -algebra, then

• if the Massey products on H(A) vanish then A is formal, and
• if A is formal, then the Massey products on H(A) vanish uniformly.

Thus we have a new tool in the study of the formality of (wheeled) props. One wheeled 
prop, which is likely formal, is the category of arrow diagrams ([12]). However, in this 
case, it might be easier to demonstrate formality by constructing an explicit GT action 
(see [47] and [1]). Alternatively, it would be interesting if the non-formality of a particular 
(wheeled) prop could be demonstrated using these Massey products, perhaps using a 
similar approach to [31].

It also turns out that one of the first theorems regarding (homotopy) props can be 
seen as a consequence of HTT. In [37], Mac Lane defines both PROPs and PACTs (an 
early form of a homotopy prop). He then expounds the existence of higher homotopies 
for the following particular prop. Let K(Hfc) be the prop governing dg-Hopf algebras 
with commutative products. Let K(Hfcc) be the prop governing dg-Hopf algebras with 
commutative products and co-commutative co-products.

Theorem (25.1 of [37]). If U is a K(Hfcc) algebra, then there is a PACT P ⊃ K(Hfc), 
which acts on the bar construction B·(U) and on the reduced bar construction B·(U), 
and a map θ : P → K(Hfcc) of PACTs such that the induced homology map

θ∗ : H(P ) ∼= H(K(Hfcc))
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is an isomorphism.

He described this result as “a covert statement on the existence of higher homotopies”, 
then used an action of K(Hfcc) on U to induce an action on B·(U), which then induced 
an explicit example of a higher homotopy. However, by the constructions of this section 
we know that the homology of K(Hfcc) is a homotopy prop, with higher homotopies 
corresponding to the Massey products. Furthermore, the higher homotopies identified 
by Mac Lane must at least be ∞-isomorphic to the Massey products (see Theorem 
10.3.10 of [33]).

Remark 7.2.9. Having access to homotopy transfer theory for (wheeled) props provides 
an alternate pathway to the deformation theory of these structures (for instance, for 
props see [42], [43], and for wheeled props see [1], [38], [35]). In particular, given that 
W and P are now known to be Koszul, the HTT techniques of Section 12.2 of [33] can 
also be applied. We note that this potential approach to defining homotopy props, and 
studying their deformations, was already suggested in a remark in Section 4.1 of [42]. We 
note that some care should be taken when comparing the results of this paper to theirs, 
as their graphical definition of a homotopy prop, introduced in Section 4.3, strictifies 
to a different notion of a prop than the one employed in this paper. This can be seen 
as their notion of an admissible subgraph of a connected graph provides no means of 
forming a connected graph via disconnected subgraphs (i.e. through use of horizontal 
composition).

8. Appendix: axioms of an alternate prop

In presenting Definition 6.1.2, we chose to encode the non-unital and non-biequivar-
iance axioms of the definition graphically in Table 3. We now formally write out these 
axioms for the interested reader. We will first introduce some simplifying terminology.

Let c′, c′′ be two disjoint subsequences of c, which both admit the reduction of the order 
of c. Then there exists a unique way to merge them into a subsequence of c (which also 
admits the reduction of the order of c), which we denote m(c′, c′′). In other words, there 
exists a unique permutation σm such that m(c′, c′′) = (c′, c′′)σm. Then, if in addition we 
have disjoint subsequences of b say b′, b′′ such that (c′, c′′) = (b′, b′′) then we also reorder 
these sequences by the same permutation σm, and in an abuse of notation, denote this 
reordering

(
m(c′, c′′)
m(b′, b′′)

)
:=
(

(c′, c′′)σm

(b′, b′′)σm

)

To ease readability, we make use of the following conventions. For each commutative 
diagram, we shall include the corresponding graph behind the axiom. These graphs each 
have 3 vertices v1, v2, v3 with respective profiles 

(
f
e

)
, 
(
d
c

)
and 

(
b
a

)
. We shall use primes 

to indicate dis-contiguous sub-profiles, if a profile e has multiple sub-profiles then we 
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will use e′ to refer to the sub-profile associated to the join to the smallest neighbouring 
vertex, and e′′ for the other sub-profile. Any equalities satisfied by these sub-profiles 
are informed by the diagrams. We will also suppose that all input sub-profiles have the 
same respective order as their enveloping profile. For instance, the caterpillar diagram 
has sub-profiles b′, c′, d′, e′, they satisfy c′ = b′, and e′ = d′, and the orders on c′, e′

are the restriction of the orders on c, e respectively. Any permutations present on the 
commutative diagram are assumed to be such that the concrete assignments of the final 
profile 

(g
h

)
(as defined by the arrows) are all equal.

Caterpillar:

v1

v2

v3

P
(f
e

)
⊗ P

(d
c

)
⊗ P

(b
a

)
P
(f
e

)
⊗ P

(d,b\b′

a,c\c′
)

P
(f,d\d′

c,e\e′

)
⊗ P

(b
a

)
P
(g
h

)
◦(e′

d′
)
,
(
id
id

)⊗id

◦(c′
b′
)
,
(
id
id

)⊗id

◦(e′
d′
)
,
(
σ1
τ1

)⊗id

◦(c′
b′
)
,
(
σ2
τ2

)

Lighthouse:
v1

v2 v3

P
(f
e

)
⊗ P

(d
c

)
⊗ P

(b
a

)
P
(f
e

)
⊗ P

(d,b
c,a

)

P
(f,d\d′

c,e\e′

)
⊗ P

(b
a

)
P
(g
h

)

P
(f
e

)
⊗ P

(b
a

)
⊗ P

(d
c

)
P
(f,b\b′

a,e\e′′

)
⊗ P

(d
c

)

◦(e′
d′
)
,
(
id
id

)⊗id

id⊗(⊗h,
(
id

id

)
)

switch

◦(m(e′ ,e′′)
m(d′ ,b′)

)
,
(
σ1
τ1

)

◦(e′′
b′
)
,
(
σ2
τ2

)

◦(e′′
b′
)
,
(
id
id

)⊗id

◦(e′
d′
)
,
(
σ3
τ3

)

Fireworks
v3

v1v2

P
(f
e

)
⊗ P

(d
c

)
⊗ P

(b
a

)
P
(f,d
e,c

)
⊗ P

(b
a

)

P
(f
e

)
⊗ P

(d,b\b′′

a,c\c′
)

P
(g
h

)

P
(d
c

)
⊗ P

(f
e

)
⊗ P

(b
a

)
P
(d
c

)
⊗ P

(f,b\b′

a,e\e′

)

id⊗◦( c′
b′′
)
,
(
id
id

)

(⊗h,
(
id

id

)
)⊗id

switch

◦(m(e′ ,c′)
m(b′ ,b′′)

)
,
(
σ1
τ1

)
◦(e′

b′
)
,
(
σ2
τ2

)

id⊗◦(e′
b′
)
,
(
id
id

)
◦( c′

b′′
)
,
(
σ3
τ3

)

Bow

v1

v2

v3

P
(f
e

)
⊗ P

(d
c

)
⊗ P

(b
a

)
P
(f
e

)
⊗ P

(d,b\b′′

a,c\c′
)

P
(f,d\d′

c,e\e′

)
⊗ P

(b
a

)
P
(g
h

)
◦(e′

d′
)
,
(
id
id

)⊗id

◦( c′
b′′
)
,
(
id
id

)⊗id

◦(m(e′ ,e′′)
m(d′ ,b′)

)
,
(
σ1
τ1

)
◦(m(e′′ ,c′)

m(b′ ,b)
)
,
(
σ2
τ2

)

Third-wheel

v1

v2 v3

P
(f
e

)
⊗ P

(d
c

)
⊗ P

(b
a

)
P
(f
e

)
⊗ P

(d,b
c,a

)

P
(f,d\d′

c,e\e′

)
⊗ P

(b
a

)
P
(g
h

)

P
(f
e

)
⊗ P

(b
a

)
⊗ P

(d
c

)
P
(f,b
e,a

)
⊗ P

(d
c

)

◦(e′
d′
)
,
(
id
id

)⊗id

id⊗(⊗h,
(
id

id

)
)

switch

◦(e′
d′
)
,
(
σ1
τ1

)

(⊗h,
(
σ2
τ2

)
)

(⊗h,
(
id

id

)
)⊗id

◦(e′
d′
)
,
(
σ3
τ3

)
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CELLULAR DIAGONALS OF PERMUTAHEDRA
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AND KURT STOECKL

Abstract. We provide a systematic enumerative and combinatorial study of geometric cellular

diagonals on the permutahedra.

In the first part of the paper, we study the combinatorics of certain hyperplane arrangements
obtained as the union of ℓ generically translated copies of the classical braid arrangement. Based

on Zaslavsky’s theory, we derive enumerative results on the faces of these arrangements involving

combinatorial objects named partition forests and rainbow forests. This yields in particular nice
formulas for the number of regions and bounded regions in terms of exponentials of generating

functions of Fuss-Catalan numbers. By duality, the specialization of these results to the case

ℓ = 2 gives the enumeration of any geometric diagonal of the permutahedron.
In the second part of the paper, we study diagonals which respect the operadic structure

on the family of permutahedra. We show that there are exactly two such diagonals, which are
moreover isomorphic. We describe their facets by a simple rule on paths in partition trees, and

their vertices as pattern-avoiding pairs of permutations. We show that one of these diagonals

is a topological enhancement of the Sanbeblidze–Umble diagonal, and unravel a natural lattice
structure on their sets of facets.

In the third part of the paper, we use the preceding results to show that there are precisely

two isomorphic topological cellular operadic structures on the families of operahedra and multi-
plihedra, and exactly two infinity-isomorphic geometric universal tensor products of homotopy

operads and A-infinity morphisms.
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Introduction

The purpose of this article is to study cellular diagonals on the permutahedra, which are cellular
maps homotopic to the usual thin diagonal △ : P → P × P, x 7→ (x, x) (Definitions 4.1 and 4.2).
Such diagonals, and in particular coherent families that we call operadic diagonals (Definition 5.5),
are of interest in algebraic geometry and topology: via the theory of Fulton–Sturmfels [FS97],
they give explicit formulas for the cup product on Losev–Manin toric varieties [LM00]; they define
universal tensor products of permutadic A∞-algebras [LR13, Mar20]; they define a coproduct on
permutahedral sets, which are models of two-fold loop spaces [SU04], and their study is needed
to pursue the work of H. J. Baues aiming at defining explicit combinatorial models for higher
iterated loop spaces [Bau80]; using the canonical projections to the operahedra, associahedra and
multiplihedra, they define universal tensor products of homotopy operads, A∞-algebras and A∞-
morphisms, respectively [LA22, LAM23].

Cellular diagonals for face-coherent families of polytopes are a fundamental object in alge-
braic topology. The Alexander–Whitney diagonal for simplices [EM54], and the Serre map for
cubes [Ser51], allow one to define the cup product in singular simplicial and cubical cohomology.
These two diagonals are also needed in the study of iterated loop spaces [Bau80], while other diag-
onals are needed in the study of the homology of fibered spaces [San09, RS18, Pro11]. In another
direction, cellular diagonals allow one to define universal tensor products in homotopical algebra.
The seminal case of the associahedra has a rich history: the first algebraic diagonal was found by
S. Saneblidze and R. Umble [SU04], followed by a second one by M. Markl and S. Shnider [MS06],
which was conjectured to coincide with the first one. This has recently been shown to hold [SU22],
while a topological enhancement of the magical formula of [MS06] was provided by N. Masuda,
H. Thomas, A. Tonks and B. Vallette [MTTV21].

In [MTTV21], the authors re-introduced the powerful technique of Fulton–Sturmfels [FS97],
which came from the theory of fiber polytopes of [BS92], to define a topological cellular diagonal of
the associahedra. We shall call such a diagonal a geometric diagonal (Definition 4.5). There are two
remarkable features of this diagonal (or more precisely this family of diagonals, one for the Loday
associahedron in each dimension). First, it respects the operadic structure of the associahedra (in
fact, forces a unique topological cellular operad structure on them!), that is, the fact that each
face of an associahedron is isomorphic to a product of lower-dimensional associahedra. Second, it
satisfies the magical formula of J.-L. Loday: the faces in the image of the diagonal are given by
the pairs of faces which are comparable in the Tamari order (see Section 4 and Remark 4.9 for a
precise statement). This magical formula for the associahedra recently lead to new enumerative
results for Tamari intervals [BCP23].

Building on [MTTV21], a general theory of geometric diagonals was developed in [LA22]. In
particular, a combinatorial formula describing the image of the diagonal of any polytope was
given [LA22, Thm. 1.26]. The topological operad structure of [MTTV21] on the associahedra
was generalized to the family of operahedra, which comprise the family of permutahedra, and
encodes the notion of homotopy operad. Cellular diagonals of the operahedra do not satisfy the
magical formula, and the combinatorial difficulty of describing their image is what prompted the
development of the theory in [LA22]. In fact, there is an interesting dichotomy between the
families of polytopes which satisfy the magical formula (simplices, cubes, freehedra, associahedra)
and those who do not (permutahedra, multiplihedra, operahedra).

Since the operahedra are generalized permutahedra [Pos09], their operadic diagonals are com-
pletely determined by the operadic diagonals of permutahedra (see [LA22, Sect. 1.6]), which is the
purpose of study of the present paper.

The first cellular diagonal of the permutahedra was obtained at the algebraic level by S. Sanebli-
dze and R. Umble [SU04]. We shall call this diagonal the original SU diagonal. The first topological
cellular diagonal of the permutahedra was defined in [LA22], we shall call it the geometric LA
diagonal. Both of these families of diagonals are operadic, i.e. they respect the product structure
on the faces of permutahedra (this property is called“comultiplicativity”in [SU04]). More precisely,
the algebraic structure encoded by the permutahedra is that of permutadic A∞-algebra [LR13,
Mar20].
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The toric varieties associated with the permutahedra are called Losev–Manin varieties, intro-
duced in [LM00]. At this level, the operadic structure is that of a reconnectad [DKL22]. The
cohomology ring structure was studied by A. Losev and Y. Manin, and quite extensively since
then, see for instance [BM14, Lin16]. Our current work brings a completely combinatorially ex-
plicit description of the cup product; it would be interesting to know if this new description can
lead to new results, or how it can be used to recover existing ones.

The first part of the paper derives enumerative results for the iterations of any geometric diag-
onal of the permutahedra. According to the Fulton–Sturmfels formula [FS97] (see Proposition 4.7
and Remark 4.10), this amounts to the study of hyperplane arrangements made of generically
translated copies of the braid arrangement. The second part studies in depth the combinatorics of
operadic diagonals of the permutahedra, providing in particular a topological enhancement of the
original SU diagonal, while the third part derives consequences of this combinatorial study in the
field of homotopical algebra. We now proceed to introduce separately each part in more detail.

Part I. Combinatorics of multiple braid arrangements. As the dual of the permutahedron Perm(n)
is the classical braid arrangement Bn, the dual of a diagonal of the permutahedron Perm(n) is a
hyperplane arrangement B2n made of 2 generically translated copies of the braid arrangement Bn. In
the first part of the paper, we therefore study the combinatorics of the (ℓ, n)-braid arrangement Bℓn,
defined as the union of ℓ generically translated copies of the braid arrangement Bn (Definition 1.14).
We are mainly interested in the ℓ = 2 case for the enumeration of the faces of the diagonals of the
permutahedron Perm(n), but the general ℓ case is not much harder and corresponds algebraically
to the enumeration of the faces of cellular ℓ-gonals of the permutahedron Perm(n).

Section 2 is dedicated to the combinatorial description of the flat poset of Bℓn and its enumerative
consequences. We first observe that the flats of Bℓn are in bijection with (ℓ, n)-partition forests,
defined as ℓ-tuples of (unordered) partitions of [n] whose intersection hypergraph is a hyperforest
(Definition 2.2). As this description is independent of the translations of the different copies (as
long as these translations are generic), we obtain by T. Zaslavsky’s theory that the number of
k-dimensional faces and of bounded faces of Bℓn only depends on k, ℓ, and n. In fact, we obtain
the following formula for the Möbius polynomial of the (ℓ, n)-braid arrangement Bℓn in terms of
pairs of (ℓ, n)-partition forests.

Theorem (Theorem 2.4). The Möbius polynomial of the (ℓ, n)-braid arrangement Bℓn is given by

µBℓ
n
(x, y) = xn−1−ℓnyn−1−ℓn

∑

F≤G

∏

i∈[ℓ]

x#Fiy#Gi

∏

p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)! ,

where F ≤ G ranges over all intervals of the (ℓ, n)-partition forest poset, and Fi[p] denotes the
restriction of the partition Fi to the part p of Gi.

This formula is not particularly easy to handle, but it turns out to simplify to very elegant for-
mulas for the number of vertices, regions, and bounded regions of the (ℓ, n)-braid arrangement Bℓn.
Namely, using an alternative combinatorial description of the (ℓ, n)-partition forests in terms of
(ℓ, n)-rainbow forests and a colored analogue of the classical Prüfer code for permutations, we first
obtain the number of vertices of the (ℓ, n)-braid arrangement Bℓn.
Theorem (Theorem 2.18). The number of vertices of the (ℓ, n)-braid arrangement Bℓn is

f0(Bℓn) = ℓ
(
(ℓ− 1)n+ 1

)n−2
.

This result can even be refined according to the dimension of the flats of the different copies
intersected to obtain the vertices of the (ℓ, n)-braid arrangement Bℓn.
Theorem (Theorem 2.19). For any k1, . . . , kℓ such that 0 ≤ ki ≤ n−1 for i ∈ [ℓ] and

∑
i∈[ℓ] ki = n− 1,

the number of vertices v of the (ℓ, n)-braid arrangement Bℓn such that the smallest flat of the ith

copy of Bn containing v has dimension n− ki − 1 is given by

nℓ−1

(
n− 1

k1, . . . , kℓ

) ∏

i∈[ℓ]

(n− ki)
ki−1.
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We then consider the regions of the (ℓ, n)-braid arrangement Bℓn. We first obtain a very simple
exponential formula for its characteristic polynomial.

Theorem (Theorem 2.20). The characteristic polynomial χBℓ
n
(y) of the (ℓ, n)-braid arrangement Bℓn

is given by

χBℓ
n
(y) =

(−1)nn!
y

[zn] exp

(
−
∑

m≥1

Fℓ,m y zm

m

)
,

where Fℓ,m :=
1

(ℓ− 1)m+ 1

(
ℓm

m

)
is the Fuss-Catalan number.

Evaluating the characteristic polynomial at y = −1 and y = 1 respectively, we obtain by T. Za-
slavsky’s theory the numbers of regions and bounded regions of the (ℓ, n)-braid arrangement Bℓn.

Theorem (Theorem 2.21). The numbers of regions and of bounded regions of the (ℓ, n)-braid ar-
rangement Bℓn are given by

fn−1(Bℓn) = n! [zn] exp

(∑

m≥1

Fℓ,m zm

m

)

and bn−1(Bℓn) = (n− 1)! [zn−1] exp

(
(ℓ− 1)

∑

m≥1

Fℓ,m zm
)
,

where Fℓ,m :=
1

(ℓ− 1)m+ 1

(
ℓm

m

)
is the Fuss-Catalan number.

Finally, Section 3 is dedicated to the combinatorial description of the face poset of Bℓn. We
observe that the faces of Bℓn are in bijection with certain ordered (ℓ, n)-partition forests, defined
as ℓ-tuples of ordered partitions of [n] whose underlying unordered partitions form an (unordered)
(ℓ, n)-partition forest (Definition 3.1). Here, which ordered (ℓ, n)-partition forests actually appear
as faces of Bℓn depends on the choice of the translations of the different copies. We provide a
combinatorial description of the possible orderings of a (ℓ, n)-partition forest compatible with
some given translations in terms of certain paths in the forest (Propositions 3.3 and 3.5), and
a combinatorial characterization of the ordered partition forests which appear for some given
translations in terms of the circuits of a certain oriented graph (Proposition 3.7).

Part II. Diagonals of permutahedra. We present cellular diagonals, the Fulton–Sturmfels method,
the magical formula and specialize the results of Part I to the permutahedra in Section 4. Then,
we initiate in Section 5 the study of operadic diagonals (Definition 5.5). These are families of
diagonals of the permutahedra which are compatible with the property that faces of permutahedra
are product of lower-dimensional permutahedra.

Theorem (Theorems 5.13 and 5.15). There are exactly four operadic geometric diagonals of the
permutahedra, the geometric LA and SU diagonals and their opposites, and only the first two
respect the weak order on permutations. Moreover, their cellular images are isomorphic as posets.

It turns out that the facets and vertices of operadic diagonals admit elegant combinatorial
descriptions. The following is a consequence of a general geometrical result, that holds for any
diagonal (Proposition 3.3).

Theorem (Theorem 5.17). A pair of ordered partitions (σ, τ) forming a partition tree is a facet
of the LA (resp. SU) geometric diagonal if and only if the minimum (resp. maximum) of every
directed path between two consecutive blocks of σ or τ is oriented from σ to τ (resp. from τ to σ).
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Vertices of operadic diagonals are pairs of permutations, and form a strict subset of intervals
of the weak order. They admit an analogous description in terms of pattern-avoidance.

Theorem (Theorem 5.24). A pair of permutations of [n] is a vertex of the LA (resp. SU) diagonal
if and only if for any k ≥ 1 and for any I = {i1, . . . , ik}, J = {j1, . . . , jk} ⊂ [k] such that i1 = 1
(resp. jk = 2k) it avoids the patterns

(j1i1j2i2 · · · jkik, i2j1i3j2 · · · ikjk−1i1jk),(LA)

resp. (j1i1j2i2 · · · jkik, i1jki2j1 · · · ik−1jk−2ikjk−1),(SU)

For each k ≥ 1, there are
(
2k−1
k−1,k

)
(k − 1)!k! such patterns, which are (21, 12) for k = 1, and the

following for k = 2

• LA avoids (3142, 2314), (4132, 2413), (2143, 3214), (4123, 3412), (2134, 4213), (3124, 4312),
• SU avoids (1243, 2431), (1342, 3421), (2143, 1432), (2341, 3412), (3142, 1423), (3241, 2413).

In Section 6, we introduce shifts that can be performed on the facets of operadic diagonals.
These allow us to show that the geometric SU diagonal is a topological enhancement of the original
SU diagonal.

Theorem (Theorem 6.24). The original and geometric SU diagonals coincide.

The proof of this result, quite technical, proceeds by showing the equivalence between 4 different
descriptions of the diagonal: the original, 1-shift, m-shift and geometric SU diagonals (Section 6.1).
This brings a positive answer to [LA22, Rem. 2.19], showing that the original SU diagonal can be
recovered from a choice of chambers in the fundamental hyperplane arrangement of the permu-
tahedron. Our formulas for the number of facets also agrees with the experimental count made
in [Vej07]. Moreover, it provides a new proof that all known diagonals on the associahedra co-
incide [SU22]. Indeed, since the family of vectors inducing the geometric SU diagonal all have
strictly decreasing coordinates, the diagonal induced on the associahedron is given by the magical
formula [MTTV21, Thm. 2], see also [LA22, Prop. 3.8].

The above theorem also allows us to translate the different combinatorial descriptions of the
facets of operadic diagonals from one to the other, compiled in the following table.

Description SU diagonal LA diagonal
Original [SU04] Definition 6.26
Geometric Theorem 5.4 [LA22]

Path extrema Theorem 5.17 Theorem 5.17
1-shifts Definition 6.10 Definition 6.26
m-shifts Definition 6.10 Definition 6.26
Lattice Proposition 6.37 Proposition 6.37
Cubical [SU04] Theorem 6.51
Matrix [SU04] Section 6.5

In Section 6.3, we show that the facets of operadic diagonals are disjoint unions of lattices, that
we call the shift lattices. These lattices are isomorphic to a product of chains, and are indexed by
the permutations of [n]. Moreover, while the pairs of facets of operadic diagonals are intervals of
the facial weak order (Section 5.6), the shift lattices are not sub-lattices of this order’s product
(see Figure 20).

Finally, we present the alternative cubical (Section 6.4) and matrix (Section 6.5) descriptions
of the SU diagonal from [SU04, SU22], providing proofs of their equivalence with the other de-
scriptions, and giving their LA counterparts. The existence of this cubical description, based on
a subdivision of the cube combinatorially isomorphic to the permutahedron, finds its conceptual
root in the bar-cobar resolution of the associative permutad. Indeed, this resolution is encoded by
the dual subdivision of the permutahedron, which is cubical since Perm(n) is a simple polytope,
and a diagonal can be obtained from the classical Serre diagonal via retraction, in the same fashion
as for the associahedra, see [MS06, Lod11] and [LAM23, Sec. 5.1].
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Part III. Higher algebraic structures. In this shorter third part of the paper, we derive some higher
algebraic consequences of the preceding results, which were the original motivation for the present
study. They concern the operahedra, a family of polytopes indexed by planar trees, which encode
(non-symmetric non-unital) homotopy operads [LA22], and themultiplihedra, a family of polytopes
indexed by 2-colored nested linear trees, which encode A∞-morphisms [LAM23]. Both of these
admit realizations “à la Loday”, which generalize the Loday realizations of the associahedra. The
faces of an operahedron are in bijection with nestings, or parenthesization, of the corresponding
planar tree, while the faces of a multiplihedron are in bijection with 2-colored nestings of the
corresponding linear tree. The main results concerning the operahedra are summarized as follows.

Theorem (Theorems 7.3, 7.12 and 7.18). There are exactly

(1) two geometric operadic diagonals of the Loday operahedra, the LA and SU diagonals,
(2) two geometric topological cellular colored operad structures on the Loday operahedra,
(3) two geometric universal tensor products of homotopy operads,

which agree with the generalized Tamari order on fully nested trees. Moreover, the two topological
operad structures are isomorphic, and the two tensor products are not strictly isomorphic, but are
related by an ∞-isotopy.

As the associahedra and the permutahedra are part of the family of operahedra, we get anal-
ogous results for A∞-algebras and permutadic A∞-algebras. The main results concerning the
multiplihedra are summarized as follows.

Theorem (Theorems 7.8, 7.16 and 7.22). There are exactly

(1) two geometric operadic diagonals of the Forcey multiplihedra, the LA and SU diagonals,
(2) two geometric topological cellular operadic bimodule structures (over the Loday associahe-

dra) on the Forcey multiplihedra,
(3) two compatible geometric universal tensor products of A∞-algebras and A∞-morphisms,

which agree with the Tamari-type order on atomic 2-colored nested linear trees. Moreover, the
two topological operadic bimodule structures are isomorphic, and the two tensor products are not
strictly isomorphic, but are related by an ∞-isotopy.

Here, by the adjective “geometric”, we mean diagonal, operadic structure and tensor product
which are obtained geometrically on the polytopes via the Fulton–Sturmfelds method. By “uni-
versal”, we mean formulas for the tensor products which apply to any pair of homotopy operads
or A∞-morphisms.

However, the isomorphisms of topological operads (resp. operadic bimodules) takes place in a
category of polytopes Poly for which the morphisms are not affine maps [LA22, Def. 4.13], and it
does not commute with the diagonal maps (Examples 7.14 and 7.17). Moreover, the pairs of faces in
the image of the two operadic diagonals are in general not in bijection (see Examples 7.20 and 7.24),
yielding different (but∞-isomorphic) tensor products of homotopy operads (resp. A∞-morphisms).
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Part I. Combinatorics of multiple braid arrangements

In this first part, we study the combinatorics of hyperplane arrangements obtained as unions of
generically translated copies of the braid arrangement. In Section 1, we first recall some classical
facts on the enumeration of hyperplane arrangements (Section 1.1), present the classical braid
arrangement (Section 1.2), and define our multiple braid arrangements (Section 1.3). Then in
Section 2, we describe their flat posets in terms of partition forests (Section 2.1) and rainbow
forests (Section 2.3), from which we derive their Möbius polynomials (Section 2.2), and some
surprising formulas for their numbers of vertices (Section 2.4) and regions (Section 2.5). Finally,
in Section 3, we describe their face posets in terms of ordered partition forests (Section 3.1), and
explore some combinatorial criteria to describe the ordered partition forests that appear as faces
of a given multiple braid arrangement (Sections 3.2 and 3.3).

1. Recollection on hyperplane arrangements and braid arrangements

1.1. Hyperplane arrangements. We first briefly recall classical results on the combinatorics of
affine hyperplane arrangements, in particular the enumerative connection between their intersec-
tion posets and their face lattices due to T. Zaslavsky [Zas75].

Definition 1.1. A finite affine real hyperplane arrangement is a finite set A of affine hyperplanes
in Rd.

Definition 1.2. A region of A is a connected component of Rd ∖
⋃

H∈A H. The faces of A are
the closures of the regions of A and all their intersections with a hyperplane of A. The face
poset of A is the poset Fa(A) of faces of A ordered by inclusion. The f -polynomial fA(x) and
b-polynomial bA(x) of A are the polynomials

fA(x) :=
d∑

k=0

fk(A)xk and bA(x) :=
d∑

k=0

bk(A)xk,

where fk(A) denotes the number of k-dimensional faces of A, while bk(A) denotes the number of
bounded k-dimensional faces of A.
Definition 1.3. A flat of A is a non-empty affine subspace of Rd that can be obtained as the
intersection of some hyperplanes of A. The flat poset of A is the poset Fl(A) of flats of A ordered
by reverse inclusion.

Definition 1.4. The Möbius polynomial µA(x, y) of A is the polynomial defined by

µA(x, y) :=
∑

F≤G

µFl(A)(F,G)xdim(F ) ydim(G),

where F ≤ G ranges over all intervals of the flat poset Fl(A), and µFl(A)(F,G) denotes the Möbius
function on the flat poset Fl(A) defined as usual by

µFl(A)(F, F ) = 1 and
∑

F≤G≤H

µFl(A)(F,G) = 0

for all F < H in Fl(A).
Remark 1.5. Our definition of the Möbius polynomial slightly differs from that of [Zas75] as we use
the dimension of F instead of its codimension, in order to simplify slightly the following statement.

Theorem 1.6 ([Zas75, Thm. A]). The f -polynomial, the b-polynomial, and the Möbius polynomial
of the hyperplane arrangement A are related by

fA(x) = µA(−x,−1) and bA(x) = µA(−x, 1).
Example 1.7. For the arrangement A of 5 hyperplanes of Figure 1, we have

µA(x, y) = x2y2 − 5x2y + 6x2 + 5xy − 10x+ 4,

so that

fA(x) = µA(−x,−1) = 12x2 + 15x+ 4 and bA(x) = µA(−x, 1) = 2x2 + 5x+ 4.
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Figure 1. A hyperplane arrangement (left) and its intersection poset (right).

Remark 1.8. The coefficient of xd in the Möbius polynomial µA(x, y) gives the more classical
characteristic polynomial

χA(y) := [xd]µA(x, y) =
∑

F

µFl(A)(Rd, F ) ydim(F ).

By Theorem 1.6, we thus have

fd(A) = (−1)d χA(−1) and bd(A) = (−1)d χA(1).

1.2. The braid arrangement. We now briefly recall the classical combinatorics of the braid ar-
rangement. See Figures 2 to 4 for illustrations when n = 3 and n = 4.

Definition 1.9. Fix n ≥ 1 and denote by H the hyperplane of Rn defined by
∑

s∈[n] xs = 0. The

braid arrangement Bn is the arrangement of the hyperplanes {x ∈ H | xs = xt} for all 1 ≤ s < t ≤ n.

Remark 1.10. Note that we have decided to work in the space H rather than in the space Rn.
The advantage is that the braid arrangement Bn in H is essential, so that we can speak of its
rays. Working in Rn would change rays to walls, and would multiply all Möbius polynomials by
a factor xy.

The combinatorics of the braid arrangement Bn is well-known. The descriptions of its face and
flat posets involve both ordered and unordered set partitions. To avoid confusions, we will always
mark with an arrow the ordered structures (ordered set partitions, ordered partition forests, etc.).
Hence, the letter π denotes an unordered set partition (the order is irrelevant, neither inside each
part, nor between two distinct parts), while −⇀π denotes an ordered set partition (the order inside
each part is irrelevant, but the order between distinct parts is relevant).

The braid arrangement Bn has a k-dimensional face

Φ(−⇀π ) := {x ∈ Rn | xs ≤ xt for all s, t such that the part of s is weakly before the part of t in −⇀π }
for each ordered set partition −⇀π of [n] into k+1 parts, or equivalently, for each surjection from [n]
to [k + 1]. The face poset Fa(Bn) is thus isomorphic to the refinement poset

−⇀
Πn on ordered set

partitions, where an ordered partition −⇀π is smaller than an ordered partition −⇀ω if each part of −⇀π is
the union of an interval of consecutive parts in−⇀ω . In particular, it has a single vertex corresponding
to the ordered partition [n], 2n − 2 rays corresponding to the proper nonempty subsets of [n]
(ordered partitions of [n] into 2 parts), and n! regions corresponding to the permutations of [n]
(ordered partitions of [n] into n parts). As an example, Figure 2 illustrates the face poset of the
braid arrangement B3.

The braid arrangement Bn has a k-dimensional flat

Ψ(π) := {x ∈ Rn | xs = xt for all s, t which belong to the same part of π}
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23|1 2|133|1213|21|2312|3

2|3|1 2|1|33|2|13|1|21|3|21|2|3
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13|2

1|2312|3

2|3|1

2|1|3

3|2|1

3|1|2

1|3|2

1|2|3

123

Figure 2. The face poset Fa(B3) of the braid arrangement B3 (left), where faces are represented
as cones (middle) or as ordered set partitions of [3] (right).
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1

2
1

3

2
1

3
2

1
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Figure 3. The flat poset Fl(B3) of the braid arrangement B3, where flats are represented as
intersections of hyperplanes (left) or as set partitions of [3] (right).

for each unordered set partition π of [n] into k+1 parts. The flat poset Fl(Bn) is thus isomorphic to
the refinement poset Πn on set partitions of [n], where a partition π is smaller than a partition ω
if each part of π is contained in a part of ω. For instance, Figures 3 and 4 illustrate the flat posets
of the braid arrangements B3 and B4. Note that the refinement in

−⇀
Πn and in Πn are in opposite

direction.
The Möbius function of the set partitions poset Πn is given by

µΠn
(π, ω) =

∏

p∈ω

(−1)#π[p]−1(#π[p]− 1)! ,

where π[p] denotes the restriction of the partition π to the part p of the partition ω, and #π[p]
denotes its number of parts. See for instance [Bir95, Rot64]. The Möbius polynomial of the braid
arrangement Bn is given by

µBn
(x, y) =

∑

k∈[n]

xk−1S(n, k)
∏

i∈[k−1]

(y − i),
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Figure 4. The flat poset Fl(B4) of the braid arrangement B4, where flats are represented as
intersections of hyperplanes (top) or as set partitions of [4] (bottom).
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where S(n, k) denotes the Stirling number of the second kind [OEI10, A008277], i.e. the number
of set partitions of [n] into k parts. For instance

µB1
(x, y) = 1

µB2
(x, y) = xy − x+ 1 = x(y − 1) + 1

µB3
(x, y) = x2y2 − 3x2y + 2x2 + 3xy − 3x+ 1 = x2(y − 1)(y − 2) + 3x(y − 1) + 1

µB4
(x, y) = x3y3 − 6x3y2 + 11x3y − 6x3 + 6x2y2 − 18x2y + 12x2 + 7xy − 7x+ 1

= x3(y − 1)(y − 2)(y − 3) + 6x2(y − 1)(y − 2) + 7x(y − 1) + 1.

In particular, the characteristic polynomial of the braid arrangement Bn is given by

χBn
(y) = (y − 1)(y − 2) . . . (y − n− 1).

Working in Rn rather than in H would lead to an additional y factor in this formula, which might
be more familiar to the reader. See Remark 1.10.

Finally, we will consider the evaluation of the Möbius polynomial µBn
(x, y) at y = 0:

πn(x) :=µBn
(x, 0) =

∑

k∈[n]

(−1)k−1 (k − 1)!S(n, k)xk−1.

The coefficients of this polynomial are given by the sequence [OEI10, A028246]. We just observe
here that it is connected to the f -polynomial of Bn.
Lemma 1.11. We have πn(x) = (1− x)fBn

(x).

Proof. This lemma is equivalent to the equality

n∑

k=1

(−1)k−1(k − 1)!S(n, k)xk−1 = (1− x)
n−1∑

k=1

(−1)k−1 k!S(n− 1, k)xk−1.

Distributing (1− x) in the right hand side gives:

(1− x)
n−1∑

k=1

(−1)k−1 k!S(n− 1, k)xk−1

=
n−1∑

k=1

k!S(n− 1, k) (−x)k−1 +
n−1∑

k=1

k!S(n− 1, k) (−x)k

=
n−1∑

k=1

k!S(n− 1, k) (−x)k−1 +
n∑

k=2

(k − 1)!S(n− 1, k − 1) (−x)k−1 + (n− 1)!S(n− 1, n− 1) (−x)n−1

= S(n− 1, 1) (−x)0 +
n−1∑

k=2

(k − 1)!
(
S(n− 1, k − 1) + k S(n− 1, k)

)
(−x)k−1.

The result thus follows from the inductive formula on Stirling numbers of the second kind

S(n+ 1, k) = k S(n, k) + S(n, k − 1)

for 0 < k < n. □
1.3. The (ℓ, n)-braid arrrangement. We now focus on the following specific hyperplane arrange-
ments, illustrated in Figure 5. We still denote by H the hyperplane of Rn defined by

∑
s∈[n] xs = 0.

Definition 1.12. For any integers ℓ, n ≥ 1, and any matrix a :=(ai,j) ∈Mℓ,n−1(R), the a-braid ar-
rangement Bℓn(a) is the arrangement of hyperplanes {x ∈ H | xs − xt = Ai,s,t} for all 1 ≤ s < t ≤ n
and i ∈ [ℓ], where Ai,s,t :=

∑
s≤j<t ai,j .

In other words, the a-braid arrangement Bℓn(a) is the union of ℓ copies of the braid arrange-
ment Bn translated according to the matrix a. Of course, the a-braid arrangement Bℓn(a) highly
depends on a. In this paper, we are interested in the case where a is generic in the following sense.

Definition 1.13. A matrix a :=(ai,j) ∈ Mℓ,n−1(R) is generic if for any i1, . . . , ik ∈ [ℓ] and dis-
tinct r1, . . . , rk ∈ [n], the equality

∑
j∈[k] Aij ,rj−1,rj = 0 implies i1 = · · · = ik (with the nota-

tion Ai,s,t :=
∑

s≤j<t ai,j and the convention r0 = rk).
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ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

Figure 5. The (ℓ, 3)-braid arrangements for ℓ ∈ [4].

We will see that many combinatorial aspects of Bℓn(a), in particular its flat poset and thus its
Möbius, f - and b-polynomials, are in fact independent of the matrix a as long as it is generic. We
therefore consider the following definition.

Definition 1.14. The (ℓ, n)-braid arrangement Bℓn is the arrangement in H obtained as the union
of ℓ generically translated copies of the braid arrangement Bn (that is, any a-braid arrangement
for some generic matrix a ∈Mℓ,n−1(R)).

The objective of Part I is to explore the combinatorics of these multiple braid arrangements.
We have split our presentation into two sections:

• In Section 2, we describe the flat poset Fl(Bℓn) of the (ℓ, n)-braid arrangement Bℓn in terms of
(ℓ, n)-partition forests (Section 2.1) and labeled (ℓ, n)-rainbow forests (Section 2.3), which
enables us to derive its Möbius, f - and b- polynomials (Section 2.2), from which we extract
interesting formulas for the number of vertices (Section 2.4) and regions (Section 2.5). Note
that all these results are independent of the translation matrix.

• In Section 3, we describe the face poset Fa(Bℓn(a)) of the a-braid arrangement Bℓn(a) in
terms of ordered (ℓ, n)-partition forests (Section 3.1). In contrast to the flat poset, this
description of the face poset depends on the translation matrix a. For a given choice
of a, we describe in particular the ordered (ℓ, n)-partitions forests with a given underlying
(unordered) (ℓ, n)-partition forest (Section 3.2). We then give a criterion to decide whether
a given ordered (ℓ, n)-partition forest corresponds to a face of Bℓn(a) (Section 3.3).

Remark 1.15. Note that each hyperplane of the (ℓ, n)-braid arrangement Bℓn is orthogonal to a
root ei−ej of the type A root system. Many such arrangements have been studied previously, for
instance, the Shi arrangement [Shi86, Shi87], the Catalan arrangement [PS00, Sect. 7], the Linial
arrangement [PS00, Sect. 8], the generic arrangement of [PS00, Sect. 5], or the discriminantal
arrangements of [MS89, BB97]. We refer to the work of A. Postnikov and R. Stanley [PS00] and
of O. Bernardi [Ber18] for much more references. However, in all these examples, either the copies
of the braid arrangement are perturbed, or they are translated non-generically. We have not been
able to find the (ℓ, n)-braid arrangement Bℓn properly treated in the literature.

Remark 1.16. Part of our discussion on the (ℓ, n)-braid arrangement Bℓn could actually be devel-
oped for a hyperplane arrangement Aℓ obtained as the union of ℓ generically translated copies of
an arbitrary linear hyperplane arrangement A. Similarly to Proposition 2.3, the flat poset Fl(Aℓ)
is isomorphic to the lower set of the ℓth Cartesian power of the flat poset Fl(A) induced by the
ℓ-tuples whose meet in the flat poset Fl(A) is the bottom element 0 (these are sometimes called
strong antichains) and which are minimal for this property. Similar to Theorem 2.4, this yields
a general formula for the Möbius polynomial of Aℓ in terms of the Möbius function of the flat
poset Fl(A). Here, we additionally benefit from the nice properties of the Möbius polynomial
of the braid arrangement Bn to obtain appealing formulas for the vertices, regions and bounded
regions of the (ℓ, n)-braid arrangement Bℓn (see Theorems 2.18 to 2.21). We have therefore decided
to restrict our attention to the (ℓ, n)-braid arrangement Bℓn.
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2. Flat poset and enumeration of Bℓn
In this section, we describe the flat poset of the (ℓ, n)-braid arrangement Bℓn in terms of

(ℓ, n)-partition forests and derive explicit formulas for its f -vector. Remarkably, the flat poset
(and thus the Möbius, f - and b- polynomials) of Bℓn is independent of the translation vectors as
long as they are generic.

2.1. Partition forests. We first introduce the main characters of this section, which will describe
the combinatorics of the flat poset of the (ℓ, n)-braid arrangement Bℓn of Definition 1.14.

Definition 2.1. The intersection hypergraph of a ℓ-tuple F :=(F1, . . . , Fℓ) of set partitions of [n] is
the ℓ-regular ℓ-partite hypergraph on all parts of all the partitions Fi for i ∈ [ℓ], with a hyperedge
connecting the parts containing j for each j ∈ [n].

Definition 2.2. An (ℓ, n)-partition forest (resp. (ℓ, n)-partition tree) is a ℓ-tuple F :=(F1, . . . , Fℓ) of
set partitions of [n] whose intersection hypergraph is a hyperforest (resp. hypertree). See Figure 6.
The dimension of F is dim(F ) :=n− 1− ℓn+

∑
i∈[ℓ] #Fi. The (ℓ, n)-partition forest poset is the

poset Φℓ
n on (ℓ, n)-partition forests ordered by componentwise refinement.

In other words, Φℓ
n is the lower set of the ℓth Cartesian power of the partition poset Πn induced

by (ℓ, n)-partition forests. Note that the maximal elements of Φℓ
n are the (ℓ, n)-partition trees.
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Figure 6. Some (3, 6)-partition forests (top) with their intersection hypergraphs (middle) and
the corresponding labeled (3, 6)-rainbow forests (bottom). The last two are trees. The order of
the colors in the bottom pictures is red, green, blue.



CELLULAR DIAGONALS OF PERMUTAHEDRA 15

The following statement is illustrated in Figure 7.

Proposition 2.3. The flat poset Fl(Bℓn) of the (ℓ, n)-braid arrangement Bℓn is isomorphic to the
(ℓ, n)-partition forest poset.

Proof. Consider that Bℓn is the a-braid arrangement Bℓn(a) for some generic matrix a. In view of
our discussion in Section 1.2, observe that, for each i ∈ [ℓ], each set partition π of [n] corresponds
to a (#π)-dimensional flat

Ψi(π) := {x ∈ H | xs − xt = Ai,s,t for all s, t in the same part of π}

of the ith copy of the braid arrangement Bn. The flats of the (ℓ, n)-braid arrangement Bℓn are thus
all of the form

Ψ(F ) :=
⋂

i∈[ℓ]

Ψi(Fi)

for certain ℓ-tuples F :=(F1, . . . , Fℓ) of set partitions of [n]. Since the matrix a is generic, Ψ(F ) is
non-empty if and only if the intersection hypergraph of F is acyclic. Moreover, Ψ(F ) is included
in Ψ(G) if and only if F refines G componentwise. Hence, the flat poset of Bℓn is isomorphic to
the (ℓ, n)-partition forest poset. Finally, notice that the codimension of the flat Ψ(F ) is the sum
of the codimensions of the flats Ψi(Fi) for i ∈ [ℓ], so that dim(F ) :=n − 1 − ℓn +

∑
i∈[ℓ] #Fi is

indeed the dimension of the flat Ψ(F ). □

2.2. Möbius polynomial. We now derive from Definition 1.4 and Proposition 2.3 the Möbius poly-
nomial of the (ℓ, n)-braid arrangement Bℓn.

Theorem 2.4. The Möbius polynomial of the (ℓ, n)-braid arrangement Bℓn is given by

µBℓ
n
(x, y) = xn−1−ℓnyn−1−ℓn

∑

F≤G

∏

i∈[ℓ]

x#Fiy#Gi

∏

p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)! ,

where F ≤ G ranges over all intervals of the (ℓ, n)-partition forest poset Φℓ
n, and Fi[p] denotes

the restriction of the partition Fi to the part p of Gi.

Proof. Observe that for F :=(F1, . . . , Fℓ) and G :=(G1, . . . , Gℓ) in Φℓ
n, we have

[F ,G] =
∏

i∈[ℓ]

[Fi, Gi] ≃
∏

i∈[ℓ]

∏

p∈Gi

Π#Fi[p].

Recall that the Möbius function is multiplicative: µP×Q

(
(p, q), (p′, q′)

)
= µP (p, p

′) · µQ(q, q
′), for

all p, p′ ∈ P and q, q′ ∈ Q. Hence, we obtain that

µΦℓ
n
(F ,G) =

∏

i∈[ℓ]

∏

p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)!.

Hence, we derive from Definition 1.4 and Proposition 2.3 that

µBℓ
n
(x, y) =

∑

F≤G

µΦℓ
n
(F ,G)xdim(F ) ydim(G)

= xn−1−ℓnyn−1−ℓn
∑

F≤G

∏

i∈[ℓ]

x#Fiy#Gi

∏

p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)!. □

By using the polynomial

πn(x) :=µBn
(x, 0) =

∑

k∈[n]

(−1)k−1 (k − 1)!S(n, k)xk−1

introduced at the end of Section 1.2, the Möbius polynomial µBℓ
n
(x, y) can also be expressed as

follows.
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Figure 7. The (2, 3)-braid arrangement B23 (left), and its flat poset (right), where flats are rep-
resented as intersections of hyperplanes (top), as (2, 3)-partitions forests (middle), and as labeled
(2, 3)-rainbow forests (bottom).
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ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

n\k 0 1 2 3 Σ
1 1 1
2 2 1 3
3 6 6 1 13
4 24 36 14 1 75

n\k 0 1 2 3 Σ
1 1 1
2 3 2 5
3 17 24 8 49
4 149 324 226 50 749

n\k 0 1 2 3 Σ
1 1 1
2 4 3 7
3 34 54 21 109
4 472 1152 924 243 2791

n\k 0 1 2 3 Σ
1 1 1
2 5 4 9
3 57 96 40 193
4 1089 2808 2396 676 6969

n\k 0 1 2 3 Σ
1 1 1
2 0 1 1
3 0 0 1 1
4 0 0 0 1 1

n\k 0 1 2 3 Σ
1 1 1
2 1 2 3
3 5 12 8 25
4 43 132 138 50 363

n\k 0 1 2 3 Σ
1 1 1
2 2 3 5
3 16 36 21 73
4 224 684 702 243 1853

n\k 0 1 2 3 Σ
1 1 1
2 3 4 7
3 33 72 40 145
4 639 1944 1980 676 5239

Table 1. The face numbers (top) and the bounded face numbers (bottom) of the (ℓ, n)-braid
arrangements for ℓ, n ∈ [4].

Proposition 2.5. The Möbius polynomial of the (ℓ, n)-braid arrangement Bℓn is given by

µBℓ
n
(x, y) = x(n−1)(1−ℓ)

∑

G∈Φℓ
n

yn−1−ℓn+
∑

i∈[ℓ] #Gi
∏

i∈[ℓ]

π#Gi(x).

Proof. As already mentioned, the (ℓ, n)-partition forest poset Φℓ
n is a lower set of the ℓth Cartesian

power of the partition poset Πn. In other words, given a (ℓ, n)-partition forest G :=(G1, . . . , Gℓ),
any ℓ-tuple F :=(F1, . . . , Fℓ) of partitions satisfying Fi ≤Πn

Gi for all i ∈ [ℓ] is a (ℓ, n)-partition
forest. Hence, we obtain from Definition 1.4 and Proposition 2.3 that

µBℓ
n
(x, y) =

∑

G∈Φℓ
n

yn−ℓn−1+
∑

i∈[ℓ] #Gi
∏

i∈[ℓ]

∑

Fi≤ΠnGi

µΠn
(Fi, Gi)x

n−ℓn−1+
∑

i∈[ℓ] #Fi ,

=
∑

G∈Φℓ
n

yn−ℓn−1+
∑

i∈[ℓ] #Gix(n−1)(1−ℓ)
∏

i∈[ℓ]

∑

πi∈Π#Gi

µΠ#Gi
(πi, 1̂)x

#πi−1,

where 1̂ denotes the maximal element in Π#Gi and πi is obtained from Fi by merging elements

in the same part of Gi. The result follows since π#Gi
(x) =

∑
πi∈Π#Gi

µΠ#Gi
(πi, 1̂)x

#πi−1. □

From Theorems 1.6 and 2.4, we thus obtain the face numbers and bounded face numbers of Bℓn,
whose first few values are gathered in Table 1.

Corollary 2.6. The f - and b-polynomials of the (ℓ, n)-braid arrangement Bℓn are given by

fBℓ
n
(x) = xn−1−ℓn

∑

F≤G

∏

i∈[ℓ]

x#Fi

∏

p∈Gi

(#Fi[p]− 1)!

and bBℓ
n
(x) = (−1)ℓxn−1−ℓn

∑

F≤G

∏

i∈[ℓ]

x#Fi

∏

p∈Gi

−(#Fi[p]− 1)!,

where F ≤ G ranges over all intervals of the (ℓ, n)-partition forest poset Φℓ
n, and Fi[p] denotes

the restriction of the partition Fi to the part p of Gi.

Example 2.7. For n = 1, we have

µBℓ
1
(x, y) = fBℓ

1
(x) = bBℓ

1
(x) = 1.

For n = 2, we have

µBℓ
2
(x, y) = xy − ℓx+ ℓ, fBℓ

2
(x) = (ℓ+ 1)x+ ℓ and bBℓ

2
(x) = (ℓ− 1)x+ ℓ.

The case n = 3 is already more interesting. Consider the set partitions P :=
{
{1}, {2}, {3}

}
,

Qi :=
{
{i}, [3]∖ {i}

}
for i ∈ [3], and R :=

{
[3]
}
. Observe that the (ℓ, 3)-partition forests are all of

the form

F :=P ℓ, Gp
i
:=P pQiP

ℓ−p−1, Hp,q
i,j

:=P pQiP
ℓ−p−q−2QjP

q (i ̸= j) or Kp
:=P pRP ℓ−p−1.



18 B. DELCROIX-OGER, G. LAPLANTE-ANFOSSI, V. PILAUD, AND K. STOECKL

(where we write a tuple of partitions of [3] as a word on {P,Q1, Q2, Q3, R}). Moreover, the cover
relations in the (ℓ, 3)-partition forest poset are precisely the relations

F ≤ Gp
i

≤H
p,q
i,j

≤Kp

≤
Hℓ−q−1,ℓ−p−1

j,i

for i ̸= j and p, q such that p+ q ≤ ℓ− 2. Hence, we have

µBℓ
3
(x, y) = x2y2 − 3ℓx2y + ℓ(3ℓ− 1)x2 + 3ℓxy − 3ℓ(2ℓ− 1)x+ ℓ(3ℓ− 2),

fBℓ
3
(x) = (3ℓ2 + 2ℓ+ 1)x2 + 6ℓ2x+ ℓ(3ℓ− 2),

and bBℓ
3
(x) = (3ℓ2 − 4ℓ+ 1)x2 + 6ℓ(ℓ− 1)x+ ℓ(3ℓ− 2).

Observe that 3ℓ2 + 2ℓ + 1 is [OEI10, A056109], that ℓ(3ℓ − 2) is [OEI10, A000567], and that
3ℓ2 − 4ℓ+ 1 is [OEI10, A045944].

2.3. Rainbow forests. In order to obtain more explicit formulas for the number of vertices and
regions of the (ℓ, n)-braid arrangement Bℓn in Sections 2.4 and 2.5, we now introduce another
combinatorial model for (ℓ, n)-partition forests which is more adapted to their enumeration.

Definition 2.8. An ℓ-rainbow coloring of a rooted plane forest F is an assignment of colors of [ℓ]
to the non-root nodes of F such that

(i) there is no monochromatic edge,
(ii) the colors of siblings are increasing from left to right.

We denote by ∥F∥ the number of nodes of F and by #F the number of trees of the forest F
(i.e. its number of connected components). An (ℓ, n)-rainbow forest (resp. tree) is a ℓ-rainbow

colored forest (resp. tree) with ∥F∥ = n nodes. We denote by Ψℓ
n (resp. Tℓ

n) the set of (ℓ, n)-

rainbow forests (resp. trees), and set Ψℓ
:=
⊔

n Ψ
ℓ
n (resp. Tℓ

:=
⊔

n T
ℓ
n).

For instance, we have listed the 14 (2, 4)-rainbow trees in Figure 8 (top). This figure actually
illustrates the following statement.

Lemma 2.9. The (ℓ,m)-rainbow trees are counted by the Fuss-Catalan number

#Tℓ
m = Fℓ,m :=

1

(ℓ− 1)m+ 1

(
ℓm

m

)
[OEI10, A062993].

Proof. We can transform a ℓ-rainbow tree R to an ℓ-ary tree T as illustrated in Figure 8. Namely,
the parent of a node N in T is the previous sibling colored as N in R if it exists, and the parent
of N in R otherwise. This classical map is a bijection from ℓ-rainbow trees to ℓ-ary trees, which
are counted by the Fuss-Catalan numbers [Kla70, HP91]. □

Remark 2.10. Recall that the corresponding generating function Fℓ(z) :=
∑

m≥0 Fℓ,m zm satisfies
the functional equation

Fℓ(z) = 1 + z Fℓ(z)
ℓ.

Definition 2.11. For a (ℓ, n)-rainbow forest F , we define

ω(F ) :=
∏

i∈[ℓ]

∏

N∈F

#Ci(N)!,

where N ranges over all nodes of F and Ci(N) denotes the children of N colored by i.

Definition 2.12. A labeling of a (ℓ, n)-rainbow forest F is a bijective map from the nodes of F
to [n] such that

(i) the label of each root is minimal in its tree,
(ii) the labels of siblings with the same color are increasing from left to right.
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Figure 8. The 14 (2, 4)-rainbow trees (top) and 14 binary trees (bottom), and the simple bijection
between them (middle). The order of the colors is red, blue.

m\ℓ 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9
3 1 5 12 22 35 51 70 92 117
4 1 14 55 140 285 506 819 1240 1785
5 1 42 273 969 2530 5481 10472 18278 29799
6 1 132 1428 7084 23751 62832 141778 285384 527085
7 1 429 7752 53820 231880 749398 1997688 4638348 9706503
8 1 1430 43263 420732 2330445 9203634 28989675 77652024 184138713
9 1 4862 246675 3362260 23950355 115607310 430321633 1329890705 3573805950

Table 2. The Fuss-Catalan numbers Fℓ,m = 1
(ℓ−1)m+1

(
ℓm
m

)
for ℓ,m ∈ [9]. See [OEI10, A062993].

Lemma 2.13. The number λ(F ) of labelings of a (ℓ, n)-rainbow forest F is given by

λ(F ) =
n!

ω(F )
∏

T∈F

∥T∥ .

Proof. Out of all n! bijective maps from the nodes of F to [n], only 1/
∏

T∈F ∥T∥ satisfy Condi-
tion (i) of Definition 2.12, and only 1/

∏
i∈[ℓ]

∏
N∈F #Ci(N)! = 1/ω(F ) satisfy Condition (ii) of

Definition 2.12. □

The following statement is illustrated in Figure 6.

Proposition 2.14. There is a bijection from (ℓ, n)-partition forests to labeled (ℓ, n)-rainbow forests,
such that if the partition forest F is sent to the labeled rainbow forest F , then

dim(F ) = #F − 1 and µΦℓ
n
(H,F ) = (−1)n−#F ω(F ).

Proof. From a labeled (ℓ, n)-rainbow forest F , we construct a (ℓ, n)-partition forest F :=(F1, . . . , Fℓ)
whose ith partition Fi has a part {N} ∪ Ci(N) for each node N of F not colored i. Condition (i)
of Definition 2.8 ensures that each Fi is indeed a partition.

Conversely, start from a (ℓ, n)-partition forest F :=(F1, . . . , Fi). Consider the colored clique
graph KF on [n] obtained by replacing each part in Fi by a clique of edges colored by i. For
each 1 < j ≤ n, there is a unique shortest path in KF from the vertex j to the smallest vertex in
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F =

1

5

34

2

6

7

8

9

1

5

34

2

6

7

8

9

(2)

1

5

34

7

86

2

9

(3)

1

5

87

6

2

9

34

= G
(4)

Figure 9. A covering relation described in Proposition 2.15, choosing c to be green, a to be 5
and b to be 7.

the connected component of j. Define the parent p of j to be the next vertex along this path, and
color the node j by the color of the edge between j and p. This defines a labeled (ℓ, n)-rainbow
forest F .

Finally, observe that

dim(F ) = n− 1− ℓn+
∑

i∈[ℓ]

#Fi = #F − 1, and

µΦℓ
n
(H,F ) =

∏

i∈[ℓ]

∏

p∈Fi

(−1)#p−1(#p− 1) =
∏

i∈[ℓ]

∏

N∈F

(−1)#Ci(N)#Ci(N)! = (−1)n−#F ω(F ).□

We now transport via this bijection the partial order of the flat lattice on rainbow forests. For
a node a of a forest F , we denote by Root(a) the root of the tree of F containing a. The following
statement is illustrated in Figure 9, choosing c to be green, a to be 5 and b to be 7.

Proposition 2.15. In the flat poset Fl(Bℓn) labeled by rainbow forests using Propositions 2.3 and 2.14,
a rainbow forest F is covered by a rainbow forest G if and only G can be obtained from F by:

(1) choosing a color c, and two vertices a and b not colored with c and with Root(a) < Root(b),
(2) shifting the colors along the path from Root(b) to b, so that each node along this path is

now colored by the former color of its child and b is not colored anymore,
(3) rerooting at b the tree containing b at b, and coloring b with c,
(4) adding an edge (a, b) and replacing the edge (b, e) by an edge (a, e) for each child e of b

colored with c.

Proof. Let us first remark that the graph obtained by these operations is indeed a rainbow forest.
First, we add an edge between two distinct connected components, so that the result is indeed
acyclic. Moreover, the condition on the color of a and on the deletion of edges between b and
vertices of color c ensures that we do not add an edge between two vertices of the same color.
Note that the parent of b inherits the color of b which is not c.

Let us recall that the cover relations in the flat poset Fl(Bℓn) are given in terms of (ℓ, n)-partition
forests by choosing a partition π of the partition tuple (which corresponds directly to choosing
a color), choosing two parts πa and πb in the partition π, and merging them, without creating a
loop in the intersection hypergraph.

By choosing two vertices in different connected components of the rainbow forest, we are sure
that the intersection hypergraph obtained by adding an edge is still acyclic.

The last point that has to be explained is the link between the condition on the color of a and b
and merging two parts in the same partition. If one of the two nodes, say a for instance is of color c,
then it belongs to the same part of π as its parent z. The merging is the same if we choose z
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n\ℓ 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8
3 1 8 21 40 65 96 133 176
4 1 50 243 676 1445 2646 4375 6728
5 1 432 3993 16384 46305 105456 208537 373248
6 1 4802 85683 521284 1953125 5541126 13119127 27350408
7 1 65536 2278125 20614528 102555745 362797056 1029059101 2500000000
8 1 1062882 72412707 976562500 6457339845 28500625446 96889010407 274371577992

Table 3. The numbers f0(Bℓn) = ℓ
(
(ℓ− 1)n+ 1

)n−2
of vertices of Bℓn for ℓ, n ∈ [8].

which is not colored c. Moreover, as b is in a different connected component, the corresponding
two parts are distinct in π. Finally, a part is just a corolla so the merging corresponds to building
a corolla with a, b and their children of color c. □

We finally recast Proposition 2.5 in terms of rainbow forests.

Proposition 2.16. The Möbius polynomial of the (ℓ, n)-braid arrangement Bℓn is given by

µBℓ
n
(x, y) = x(n−1)(1−ℓ)

∑

G∈Ψℓ
n

yn−1+#E(G)
∏

i∈[ℓ]

πn−#E(G,i)(x).

Remark 2.17. To further simplify this expression, we would need to count the number of rainbow
forests with a prescribed number of colored edges. However, this number does not admit a known
multiplicative formula, up to our knowledge. When there is only one color, the corresponding
sequence (counting non-colored forests on n nodes and k edges, rooted in the minimal label of
each connected component) is [OEI10, A138464].

2.4. Enumeration of vertices of Bℓn. We now use the labeled (ℓ, n)-rainbow forests of Section 2.3
to derive more explicit formulas for the number of vertices of the (ℓ, n)-braid arrangement Bℓn.
The first few values are gathered in Table 3.

Theorem 2.18. The number of vertices of the (ℓ, n)-braid arrangement Bℓn is

f0(Bℓn) = ℓ
(
(ℓ− 1)n+ 1

)n−2
.

Proof. By Propositions 2.3 and 2.14, we just need to count the labeled (ℓ, n)-rainbow trees. A
common reasoning for counting Cayley trees is the use of its Prüfer code defined by recursively
pruning the smallest leaf while writing down the label of its parent. This bijection can be adapted
to colored Cayley trees by writing down the label of the parent colored by the color of the pruned
leaf. This leads to a bijection with certain colored words of length n − 1. Namely, there are two
possibilities:

• either the pruned leaf is attached to the node 1 and it can have all ℓ colors,
• or it is attached to one of the n− 1 other nodes and it can only have ℓ− 1 colors.

Note that the last letter in the Prüfer code (obtained by removing the last edge) is necessarily the
root 1, with ℓ possible different colors. Hence, there are

(
ℓ+ (n− 1)(ℓ− 1)

)n−2
ℓ = ℓ

(
(ℓ− 1)n+ 1

)n−2

such words. Similar ideas were used in [Lew99]. □
We can refine the formula of Theorem 2.18 according to the dimension of the flats of the different

copies intersected to obtain the vertices of the (ℓ, n)-braid arrangement Bℓn.
Theorem 2.19. For any k1, . . . , kℓ such that 0 ≤ ki ≤ n − 1 for i ∈ [ℓ] and

∑
i∈[ℓ] ki = n− 1, the

number of vertices v of the (ℓ, n)-braid arrangement Bℓn such that the smallest flat of the ith copy
of Bn containing v has dimension n− ki − 1 is given by

nℓ−1

(
n− 1

k1, . . . , kℓ

) ∏

i∈[ℓ]

(n− ki)
ki−1.
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Proof. By Propositions 2.3 and 2.14, we just need to count the labeled (ℓ, n)-rainbow trees with ki
nodes colored by i. Forgetting the labels, the (ℓ, n)-rainbow trees with ki nodes colored by i
are precisely the spanning trees of the complete multipartite graph Kk1,...,kℓ,1 (where the last 1
stands for the uncolored root). Using a Prüfer code similar to that of the proof of Theorem 2.18,
R. Lewis proved in [Lew99] that the latter are counted by nℓ−1

∏
i∈[ℓ](n− ki)

ki−1. Finally, the

possible labelings are counted by the multinomial coefficient
(

n−1
k1,...,kℓ

)
. □

2.5. Enumeration of regions and bounded regions of Bℓn. We finally use the labeled (ℓ, n)-rainbow
forests of Section 2.3 to derive more explicit formulas for the number of regions and bounded
regions of the (ℓ, n)-braid arrangement Bℓn. The first few values are gathered in Tables 4 and 5.
We first compute the characteristic polynomial of Bℓn.

Theorem 2.20. The characteristic polynomial χBℓ
n
(y) of the (ℓ, n)-braid arrangement Bℓn is given by

χBℓ
n
(y) =

(−1)nn!
y

[zn] exp

(
−
∑

m≥1

Fℓ,m y zm

m

)
,

where Fℓ,m :=
1

(ℓ− 1)m+ 1

(
ℓm

m

)
is the Fuss-Catalan number.

Proof. By Theorem 2.4 and Proposition 2.14, the characteristic polynomial χBℓ
n
(y) is

χBℓ
n
(y) =

∑

F∈Φℓ
n

µΦℓ
n
(H,F ) ydim(F ) =

∑

F∈Ψℓ
n

λ(F ) (−1)n−#F ω(F ) y#F−1.

From Lemma 2.13, we observe that

λ(F )ω(F ) (−y)#F z∥F∥

∥F∥! =
∏

T∈F

−y z∥T∥

∥T∥ ,

where T ranges over the trees of F . Now using that rainbow forests are exactly sets of rainbow
trees, we obtain that

∑

F∈Ψℓ

λ(F )ω(F ) (−y)#F z∥F∥

∥F∥! =
∑

F∈Ψℓ

∏

T∈F

−y z∥T∥

∥T∥ = exp

( ∑

T∈Tℓ

−y z∥T∥

∥T∥

)
.

From Lemma 2.9, we obtain that

exp

( ∑

T∈Tℓ

−y z∥T∥

∥T∥

)
= exp

(
−
∑

m≥1

Fℓ,m y zm

m

)
.

We conclude that

χBℓ
n
(y) =

∑

F∈Ψℓ
n

λ(F ) (−1)n−#F ω(F ) y#F−1

=
(−1)n n!

y
[zn]

∑

F∈Ψℓ

λ(F )ω(F ) (−y)#F z∥F∥

∥F∥!

=
(−1)nn!

y
[zn] exp

(
−
∑

m≥1

Fℓ,m y zm

m

)
. □

From the characteristic polynomial of Bℓn and Remark 1.8, we obtain its numbers of regions
and bounded regions.
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n\ℓ 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9
3 6 17 34 57 86 121 162 209
4 24 149 472 1089 2096 3589 5664 8417
5 120 1809 9328 29937 73896 154465 287904 493473
6 720 28399 241888 1085157 3442816 8795635 19376064 38323753
7 5040 550297 7806832 49075065 200320816 625812385 1629858672 3720648337
8 40320 12732873 302346112 2666534049 14010892416 53536186825 164859458688 434390214657

Table 4. The numbers fn−1(Bℓn) of regions of Bℓn for ℓ, n ∈ [8].

n\ℓ 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 0 1 2 3 4 5 6 7
3 0 5 16 33 56 85 120 161
4 0 43 224 639 1384 2555 4248 6559
5 0 529 4528 17937 49696 111745 219024 389473
6 0 8501 120272 663363 2354624 6455225 14926176 30583847
7 0 169021 3968704 30533409 138995776 464913325 1268796096 2996735329
8 0 4010455 156745472 1684352799 9841053184 40179437975 129465630720 352560518527

Table 5. The numbers bn−1(Bℓn) of bounded regions of Bℓn for ℓ, n ∈ [8].

Theorem 2.21. The numbers of regions and of bounded regions of the (ℓ, n)-braid arrangement Bℓn
are given by

fn−1(Bℓn) = n! [zn] exp

(∑

m≥1

Fℓ,m zm

m

)

and bn−1(Bℓn) = (n− 1)! [zn−1] exp

(
(ℓ− 1)

∑

m≥1

Fℓ,m zm
)
,

where Fℓ,m :=
1

(ℓ− 1)m+ 1

(
ℓm

m

)
is the Fuss-Catalan number.

Proof. By Remark 1.8, we obtain from Theorem 2.20 that

fn−1(Bℓn) = (−1)n−1χBℓ
n
(−1) = n! [zn] exp

(∑

m≥1

Fℓ,m zm

m

)
,

bn−1(Bℓn) = (−1)n−1χBℓ
n
(1) = −n! [zn] exp

(
−
∑

m≥1

Fℓ,m zm

m

)
.

To conclude, we thus just need to observe that Uℓ(z) =
∂
∂zVℓ(z) where

Uℓ(z) := exp

(
(ℓ− 1)

∑

m≥1

Fℓ,m zm
)

and Vℓ(z) := − exp

(
−
∑

m≥1

Fℓ,m zm

m

)
.

For this, consider the generating functions

Fℓ(z) :=
∑

m≥0

Fℓ,m zm and Gℓ(z) :=
∑

m≥1

Fℓ,m zm

m
.

Recall from Remark 2.10 that Fℓ(z) satisfies the functional equation

Fℓ(z) = 1 + z Fℓ(z)
ℓ.

We thus obtain that

F ′
ℓ(z)

(
1− ℓ z Fℓ(z)

ℓ−1
)
= Fℓ(z)

ℓ and Fℓ(z)
(
1− ℓ z Fℓ(z)

ℓ−1
)
= 1− (ℓ− 1) z Fℓ(z)

ℓ.
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Combining these two equations, we get

(1) Fℓ(z)
ℓ+1 = F ′

ℓ(z)
(
1− (ℓ− 1) z Fℓ(z)

ℓ
)
.

Observe now that

(2) z G′
ℓ(z) = Fℓ(z)− 1 = z Fℓ(z)

ℓ and G′′
ℓ (z) = ℓ Fℓ(z)

ℓ−1 F ′
ℓ(z).

Hence
Uℓ(z) = exp

(
(ℓ− 1) (Fℓ(z)− 1)

)
= exp

(
(ℓ− 1) z G′

ℓ(z)
)

and

V ′
ℓ (z) =

∂

∂z
− exp

(
−Gℓ(z)

)
= G′

ℓ(z) exp
(
−Gℓ(z)

)
.

Consider now the function

Wℓ(z) = V ′
ℓ (z)/Uℓ(z) = G′

ℓ(z) exp
(
−Gℓ(z)− (ℓ− 1) z G′

ℓ(z)
)
.

Clearly, Wℓ(0) = 1. Moreover, using (2), we obtain that its derivative is

W ′
ℓ(z) =

(
G′′

ℓ (z)
(
1− (ℓ− 1) z G′

ℓ(z)
)
− ℓG′

ℓ(z)
2
)
exp

(
−Gℓ(z)− (ℓ− 1) z G′

ℓ(z)
)

= ℓ Fℓ(z)
ℓ−1
(
F ′
ℓ(z)

(
1− (ℓ− 1) z Fℓ(z)

ℓ
)
− Fℓ(z)

ℓ+1
)
exp

(
−Gℓ(z)− (ℓ− 1) z G′

ℓ(z)
)
,

which vanishes by (1). □

3. Face poset and combinatorial description of Bℓn(a)
In this section, we describe the face poset of the a-braid arrangement Bℓn(a) in terms of ordered

(ℓ, n)-partition forests. This section highly depends on the choice of the translation matrix a.

3.1. Ordered partition forests. We now introduce the combinatorial objects that will be used to
encode the faces of the a-braid arrangement Bℓn(a) of Definition 1.12.

Definition 3.1. An ordered (ℓ, n)-partition forest (resp. tree) is an ℓ-tuple
−⇀
F :=(

−⇀
F1, . . . ,

−⇀
Fℓ) of

ordered set partitions of [n] such that the corresponding ℓ-tuple F :=(F1, . . . , Fℓ) of unordered
set partitions of [n] forms an (ℓ, n)-partition forest (resp. tree). The ordered (ℓ, n)-partition forest
poset is the poset

−⇀
Φℓ

n on ordered (ℓ, n)-partition forests ordered by componentwise refinement.
In other words,

−⇀
Φℓ

n is the subposet of the ℓth Cartesian power of the ordered partition poset
−⇀
Πn

induced by ordered (ℓ, n)-partition forests. Note that the maximal elements of
−⇀
Φℓ

n are the ordered
(ℓ, n)-partition trees.

The following statement is the analogue of Proposition 2.3, and is illustrated in Figures 10
and 11.

Proposition 3.2. The face poset Fa(Bℓn(a)) of the a-braid arrangement Bℓn(a) is isomorphic to an
upper set

−⇀
Φℓ

n(a) of the ordered (ℓ, n)-partition forest poset
−⇀
Φℓ

n.

Proof. The proof is based on that of Proposition 2.3. A face of Bℓn(a) is an intersection of faces
of the ℓ copies of Bℓn, hence corresponds to an ℓ-tuple of ordered partitions of [n]. Moreover, the
flats supporting these faces intersect, so that the corresponding unordered partitions must form an
(ℓ, n)-partition forest. Hence, each face of Bℓn(a) corresponds to a certain ordered (ℓ, n)-partition
forest. Moreover, the inclusion of faces of Bℓn(a) translates to the componentwise refinement on
ordered partitions. Finally, by genericity, it is immediate that we obtain an upper set of this
componentwise refinement order. □

We now fix a generic translation matrix a :=(ai,j) and still denote by Ai,s,t :=
∑

s≤j<t ai,j for
all 1 ≤ s < t ≤ n and i ∈ [ℓ] (and often write Ai,t,s for −Ai,s,t). The objective of this section is to
describe

• the ordered (ℓ, n)-partitions forests of the upper set
−⇀
Φℓ

n(a) with a given underlying (un-
ordered) (ℓ, n)-partition forest (Section 3.2),

• a criterion to decide whether a given ordered (ℓ, n)-partition forest belongs to the upper
set
−⇀
Φℓ

n(a), i.e. corresponds to a face of Bℓn(a) (Section 3.3).
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Figure 10. Labelings of the faces of the arrangement B23(a) for a =

[
0 0
−1 −1

]
.

3.2. From partition forests to ordered partition forests. In this section, we describe the ordered
(ℓ, n)-partitions forests

−⇀
F of the upper set

−⇀
Φℓ

n(a) with a given underlying (ℓ, n)-partition forest F .
We denote by cc(F ) the connected components of F , meaning the partition of [n] given by the
hyperedge labels of the connected components of the intersection hypergraph of F . We first
observe that the choice of a fixes the order of the parts in a common connected component of F .

Proposition 3.3. Consider a (ℓ, n)-partition forest F :=(F1, . . . , Fℓ), and two integers s, t ∈ [n]
labeling two hyperedges in the same connected component of the intersection hypergraph of F .
Assume that the unique path from s to t in the hypergraph of F passes through the hyperedges
labeled by s = r0, . . . , rq = t and through parts of the partitions Fi1 , . . . , Fiq . Then for any ordered

(ℓ, n)-partition forest
−⇀
F :=(

−⇀
F1, . . . ,

−⇀
Fℓ) of the upper set

−⇀
Φℓ

n(a) with underlying (ℓ, n)-partition
forest F and any i ∈ [ℓ], the order of s and t in

−⇀
F i is given by the sign of Ai,s,t−

∑
p∈[q] Aip,rp−1,rp .
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Figure 11. Labelings of the faces of the arrangement B23(a) for a =

[
0 0
1 −2

]
.

Proof. Consider any point x in the face of Bℓn(a) corresponding to
−⇀
F . Along the path from s to t,

we have xrp−1 − xrp = Aip,rp−1,rp for each p ∈ [q]. Hence, we obtain that

xs − xt =
∑

p∈[q]

(xrp−1 − xrp) =
∑

p∈[q]

Aip,rp−1,rp .

The order of s, t in
−⇀
F i is given by the sign of Ai,s,t−(xs−xt), hence of Ai,s,t−

∑
p∈[q] Aip,rp−1,rp . □
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We now describe the different ways to order the parts in distinct connected components of F .
For this, we need the following posets.

Definition 3.4. Consider a (ℓ, n)-partition forest F and denote by cc(F ) the connected components
of F . For each pair s, t ∈ [n] in distinct connected components of cc(F ), we define the chain <s,t on
the ℓ triples (i, s, t) for i ∈ [ℓ] given by the order of the values Ai,s,t. The inversion poset Inv(F ,a)
is then the poset obtained by quotienting the disjoint union of the chains <s,t (for all s, t ∈ [n] in
distinct connected components of cc(F )) by the equivalence relation (i, s, t) ≡ (i, s′, t′) if s and s′

belong to the same part of Fi and t and t′ belong to the same part of Fi. We say that a subset X
of Inv(F ,a) is antisymmetric if (i, s, t) ∈ X ⇐⇒ (i, t, s) /∈ X.

Proposition 3.5. The ordered (ℓ, n)-partition forests of the upper set
−⇀
Φℓ

n(a) with a given under-
lying (ℓ, n)-partition forest F are in bijection with the antisymmetric lower sets of the inversion
poset Inv(F ,a).

Proof. Consider an ordered (ℓ, n)-partition forest
−⇀
F of the upper set

−⇀
Φℓ

n(a). Let x be any point
of the face of Bℓn(a) corresponding to

−⇀
F . For each pair s, t ∈ [n] in distinct connected components

of cc(F ), let Is,t(
−⇀
F ) be the set of indices i ∈ [ℓ] such that xs − xt < Ai,s,t. Note that Is,t is

by definition a lower set of the chain <s,t of Inv(F ,a). Hence, I(
−⇀
F ) :=

⋃
s,t Is,t/≡ is a lower set

of Inv(F ,a). Moreover, it is clearly antisymmetric since

(i, s, t) ∈ I(
−⇀
F ) ⇐⇒ xs − xt < Ai,s,t ⇐⇒ xt − xs > Ai,t,s ⇐⇒ (i, t, s) /∈ I(

−⇀
F ).

Conversely, given an antisymmetric lower set I of Inv(F ,a), we can reconstruct an ordered
(ℓ, n)-partition forest

−⇀
F by ordering each pair s, t ∈ [n] in

−⇀
F i

• according to Proposition 3.3 (hence independently of I) if s and t belong to the same
connected component of F ,

• according to I if s and t belong to distinct connected components of F . Namely, we place
the block of

−⇀
F i containing s before the block of

−⇀
F i containing t if and only if (i, s, t) ∈ I.

It is then straightforward to check that the resulting ordered (ℓ, n)-partition forest belongs to the
upper set

−⇀
Φℓ

n(a), by exhibiting a point x in of the corresponding face of Bℓn(a). □
3.3. A criterion for ordered partition forests. We now consider a given ordered (ℓ, n)-partition
forest

−⇀
F and provide a criterion to decide if it belongs to the upper set

−⇀
Φℓ

n(a) corresponding to
the faces of Bℓn(a). For this, we need the following directed graph associated to

−⇀
F .

Definition 3.6. For an ordered partition −⇀π :=−⇀π 1| · · · |−⇀π k of [n], we denote by D−⇀π the directed
graph on [n] with an arc max(−⇀π j)→ min(−⇀π j+1) for each j ∈ [k−1] and a cycle x1 → · · · → xp → x1

for each part −⇀π j = {x1 < · · · < xp}. Note that D−⇀π has n vertices and n + k arcs. For an or-
dered (ℓ, n)-partition forest

−⇀
F :=(

−⇀
F1, . . . ,

−⇀
Fℓ), we denote by D−⇀

F the superposition of the directed
graphs D−⇀

F i
for i ∈ [ℓ], where the arcs of D−⇀

F i
are labeled by i.

Proposition 3.7. An ordered (ℓ, n)-partition forest
−⇀
F belongs to the upper set

−⇀
Φℓ

n(a) if and only
if
∑

α∈γ Ai(α),s(α),t(α) ≥ 0 for any (simple) oriented cycle γ in D−⇀
F , where each arc α ∈ γ has

label i(α), source s(α), and target t(α).

Proof. Consider an ordered (ℓ, n)-partition forest
−⇀
F :=(

−⇀
F 1, . . . ,

−⇀
F ℓ). For each i ∈ [ℓ], denote by

• mi the number of arcs of D−⇀
F i

• Mi the incidence matrix of D−⇀
F i

, with mi rows and n columns, with a row for each arc α
of D−⇀

F i
containing a −1 in column s(α), a 1 in column t(α), and 0 elsewhere,

• zi the column vector in Rmi with a row for each arc α ofD−⇀
F i

containing the valueAi(α),s(α),t(α).

Then a point x ∈ Rn belongs to the face of the ith braid arrangement corresponding to
−⇀
F i if and

only if it satisfies Mi x ≤ zi. Hence,
−⇀
F appears as a face of the a-braid arrangement if and only

if there exists x ∈ Rn such that M x ≤ z, where M is the (m×n)-matrix (where m :=
∑

i∈[ℓ] mi),

obtained by piling the matrices Mi for i ∈ [ℓ] and similarly, z is the column vector obtained by
piling the vectors zi. A direct application of the Farkas lemma (see e.g. [Zie98, Prop. 1.7]), there
exists x ∈ Rn such that M x ≤ z if and only if cz ≥ 0 for any c ∈ (Rm)∗ with c ≥ 0 and cM = 0.
Now it is classical that the left kernel of the incidence matrix of a directed graph is generated
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by its circuits (non-necessarily oriented cycles), and that the positive cone in this left kernel is
generated by its oriented cycles. □
Remark 3.8. Note that we made some arbitrary choices here by choosing the arc from max(−⇀π j)
to min(−⇀π j+1) between two consecutive parts −⇀π j and −⇀π j+1 and a cycle inside each part −⇀π j

(while we said that the order in each part is irrelevant). We could instead have considered all
arcs connecting two elements of two consecutive parts, or two elements inside the same part. Our
choices just limit the amount of oriented cycles in D−⇀π .
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Part II. Diagonals of permutahedra

In this second part, we study the combinatorics of the diagonals of the permutahedra. In
Section 4, we first recall the definition and some known facts about cellular diagonals of polytopes
(Section 4.1), which we immediately specialize to the classical permutahedron (Section 4.2), and
connect to Part I to derive enumerative statements on the diagonals of permutahedra (Section 4.3).
In Section 5, we consider two particular diagonals, the LA and SU diagonals (Section 5.1), we show
that these are the only two operadic diagonals which induce the weak order (Section 5.2), and that
they are isomorphic (Section 5.3). Using results from Sections 3 and 4, we then characterize their
facets in terms of paths in (2, n)-partition trees (Section 5.4), and their vertices as pattern-avoiding
pairs of permutations (Section 5.5). Finally, in Section 6, we show that the geometric SU diagonal
△SU is a topological enhancement of the original Saneblidze-Umble diagonal [SU04] (Section 6.1).
In order to prove this result, we define different types of shifts that can be performed on the
facets of the SU diagonal, and give several new equivalent definitions of it. These descriptions
are directly translated to the LA diagonal via isomorphism (Section 6.2). Moreover, we observe
that the shifts define a natural lattice structure on the set of facets of operadic diagonals, that
we call the shift lattice (Section 6.3). Finally, we present the alternative matrix (Section 6.5) and
cubical (Section 6.4) descriptions of the SU diagonal from [SU04, SU22], provide proofs of their
equivalence with the other descriptions, and give their LA counterparts.

4. Cellular diagonals

4.1. Cellular diagonals for polytopes. As discussed in the introduction, cellular approximations of
the thin diagonal for families of polytopes are of fundamental importance in algebraic topology
and geometry. They allow one to define the cup product and thus define the ring structure on
the cohomology groups of a topological space, and combinatorially on the Chow groups of a toric
variety. We now proceed to define thin, cellular, and geometric diagonals.

Definition 4.1. The thin diagonal of a set X is the map δ : X → X ×X defined by δ(x) :=(x, x)
for all x ∈ X. See Figure 13 (left).

Definition 4.2. A cellular diagonal of a d-dimensional polytope P is a continuous map ∆ : P → P × P
such that

(1) its image is a union of d-dimensional faces of P × P (i.e. it is cellular),
(2) it agrees with the thin diagonal of P on the vertices of P , and
(3) it is homotopic to the thin diagonal of P , relative to the image of the vertices of P .

See Figure 13 (middle left). A cellular diagonal is said to be face coherent if its restriction to a
face of P is itself a cellular diagonal for that face.

A powerful geometric technique to define face coherent cellular diagonals on polytopes first
appeared in [FS97], was presented in [MTTV21], and was fully developed in [LA22]. We provide
in Theorem 4.4 the precise (but slightly technical) definition of these diagonals, even though we
will only use the characterization of the faces in their image provided in Theorem 4.6.

The key idea is that any vector v in generic position with respect to P defines a cellular diagonal
of P . For z a point of P , we denote by ρzP :=2z − P the reflection of P with respect to the
point z.

Definition 4.3. The fundamental hyperplane arrangement HP of a polytope P ⊂ Rd is the set of
all linear hyperplanes of Rd orthogonal to the edges of P ∩ ρzP for all z ∈ P . See Figure 12.

A vector is generic with respect to P if it does not belong to the union of the hyperplanes of the
fundamental hyperplane arrangement HP . In particular, such a vector is not perpendicular to any
edge of P , and we denote by minv(P ) (resp. maxv(P )) the unique vertex of P which minimizes
(resp. maximizes) the scalar product with v. Note that the datum of a polytope P together with
a vector v generic with respect to P was called positively oriented polytope in [MTTV21, LA22,
LAM23].



30 B. DELCROIX-OGER, G. LAPLANTE-ANFOSSI, V. PILAUD, AND K. STOECKL

Theorem 4.4. For any vector v ∈ Rd generic with respect to P , the tight coherent section △(P,v)

of the projection P × P → P, (x,y) 7→ (x + y)/2 selected by the vector (−v,v) defines a cellular
diagonal of P . More precisely, △(P,v) is given by the formula

△(P,v) : P → P × P
z 7→

(
minv(P ∩ ρzP ), maxv(P ∩ ρzP )

)
.

Definition 4.5. A geometric diagonal of a polytope P is a diagonal of the form △(P,v) for some

vector v ∈ Rd generic with respect to P .

Note that the geometric diagonal △(P,v) only depends on the region of HP containing v,
see [LA22, Prop. 1.23].

Now the following universal formula [LA22, Thm. 1.26] expresses combinatorially the faces in
the image of the geometric diagonal△(P,v). Recall that the normal cone of a face F of a polytope P

in Rd is the cone of directions c ∈ Rd such that the maximum of the scalar product ⟨ c | x ⟩ over P
is attained for some x in F .

Theorem 4.6 ([LA22, Thm. 1.26]). Fix a vector v ∈ Rd generic with respect to P . For each
hyperplane H of the fundamental hyperplane arrangement HP , denote by Hv the open half space
defined by H and containing v. The faces of P×P in the image of the geometric diagonal△(P,v) are

the faces F×G where F and G are faces of P such that either the normal cone of F intersects H−v

or the normal cone of G intersects Hv, for each H ∈ HP .

The image of △(P,v) is a union of pairs of faces F × G of the Cartesian product P × P . By
drawing the polytopes (F +G)/2 for all pairs of faces (F,G) ∈ Im△(P,v), we can visualize △(P,v)

as a polytopal subdivision of P . See Figure 13 (middle right) and Figure 14.
It turns out that the dual of this complex is just the common refinement of two translated

copies of the normal fan of P . See Figure 13 (right). Recall that the normal fan of P is the fan
formed by the normal cones of all faces of P . We thus obtain the following statement.

Proposition 4.7 ([LA22, Coro. 1.4]). The inclusion poset on the faces in the image of the diago-
nal △(P,v) is isomorphic to the reverse inclusion poset on the faces of the common refinement of
two copies of the normal fan of P , translated from each other by the vector v.

Finally, the following statement relates the image of the diagonal △(P,v) to the intervals of the
poset obtained by orienting the skeleton of P in direction v.

Proposition 4.8 ([LA22, Prop. 1.17]). For any polytope P and any generic vector v, we have

(3) Im△(P,v) ⊆
⋃

F,G faces of P
maxv(F )≤minv(G)

F ×G.

Remark 4.9. For some polytopes such as the simplices [EM54], the cubes [Ser51], the freehe-
dra [San09], and the associahedra [MTTV21], the reverse inclusion also holds (in the case of the
simplices and the cubes, the diagonals are known as the Alexander–Whitney map [EM54] and Serre
map [Ser51]). According to [MTTV21], the resulting equality enhancing (3) was called magical
formula by J.-L. Loday. This equality simplifies the computation of the f -vectors of the diagonals.
For instance, the number of k-dimensional faces in the diagonal of the (n−1)-dimensional simplex,
cube, and associahedron are respectively given by

fk(△Simplex(n)) = (k + 1)

(
n+ 1

k + 2

)
[OEI10, A127717],

fk(△Cube(n)) =

(
n− 1

k

)
2k3n−1−k [OEI10, A038220],

fk(△Asso(n)) =
2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
[BCP23].

Polytopes of greater complexity such as the multiplihedra [LAM23] or the operahedra [LA22],
which include the permutahedra, do not possess this exceptional property, and the f -vectors of
their diagonals are harder to compute.
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Figure 12. The fundamental hyperplane arrangements of the 3-dimensional simplex (left), cube
(middle), and permutahedron (right). The hyperplanes perpendicular to edges of some intersection
P∩ρzP , which are not edges of the polytope P , are colored in blue. Left and rightmost illustrations
from [LA22, Fig. 12].
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Figure 13. Cellular diagonals of the segment (top), the triangle (middle) and the square (bot-
tom). For each of them, we have represented the thin diagonal of P (left, in blue), a cellular
diagonal of P (middle left, in red) both in P ×P , the associated polytopal subdivision of P (mid-
dle right) and the common refinement of the two copies of the normal fan of P (right) both in P .
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Figure 14. The subdivisions induced by cellular diagonals of the 3-dimensional simplex (left),
cube (middle), and permutahedron (right). Right illustration from [LA22, Fig. 13].

Remark 4.10. This is in fact precisely the content of the Fulton–Sturmfels formula for the inter-
section product on toric varieties [FS97, Thm. 4.2], where the definition of cellular diagonals as
tight coherent sections first appeared.

To conclude, we define the opposite of a geometric diagonal.

Definition 4.11. The opposite of the geometric diagonal △ :=△(P,v) for a vector v ∈ Rd generic
with respect to P is the geometric diagonal △op :=△(P,−v) for the vector −v. Observe that

F ×G ∈ Im△ ⇐⇒ G× F ∈ Im△op.

4.2. Cellular diagonals for the permutahedra. We now specialize the statements of Section 4.1 to
the standard permutahedron. We first recall its definition.

Definition 4.12. The permutahedron Perm(n) is the polytope in Rn defined equivalently as

• the convex hull of the points
∑

i∈[n] i eσ(i) for all permutations σ of [n], see [Sch11],

• the intersection of the hyperplane
{
x ∈ Rn

∣∣ ∑
i∈I xi =

(
n+1
2

)}
with the affine halfspaces{

x ∈ Rn
∣∣ ∑

i∈I xi ≥
(
#I+1

2

)}
for all ∅ ̸= I ⊊ [n], see [Rad52].

The normal fan of the permutahedron Perm(n) is the fan defined by the braid arrangement Bn.
In particular, the faces of Perm(n) correspond to the ordered partitions of [n]. Moreover, when
oriented in a generic direction, the skeleton of the permutahedron Perm(n) is isomorphic to the
Hasse diagram of the classical weak order on permutations of [n]. See Figure 15.

The fundamental hyperplane arrangement of the permutahedron Perm(n) was described in [LA22,
Sect. 3.1]. As we will use the following set throughout the paper, we embed it in a definition.

Definition 4.13. For n ∈ N, we define

U(n) :=
{
{I, J}

∣∣ I, J ⊂ [n] with #I = #J and I ∩ J = ∅
}
.

An ordering of U(n) is a set containing exactly one of the two ordered pairs (I, J) or (J, I) for
each {I, J} ∈ U(n).

Proposition 4.14 ([LA22, Sect. 3.1]). The fundamental hyperplane arrangement of the permutahe-
dron Perm(n) is given by the hyperplanes

{
x ∈ Rn

∣∣ ∑
i∈I

xi =
∑
j∈J

xj

}
for all {I, J} ∈ U(n).

For a vector v generic with respect to Perm(n), we denote by O(v) the ordering of U(n) such
that

∑
i∈I vi >

∑
j∈J vj for all (I, J) ∈ O(v). Applying Theorem 4.6, we next describe the faces

in the image of the geometric diagonal △(Perm(n),v). For this, the following definition will be
convenient.



CELLULAR DIAGONALS OF PERMUTAHEDRA 33

34124312
4321 3421

3142

3241

3214

13421432

1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

4321

4231 43123421

34123241 2431 4213 4132

1234

1324 12432134

21432314 3124 1342 1423

3142 2413 4123 14323214 2341

Figure 15. The permutahedron Perm(4) (left) and the weak order on permutations of [4] (right).
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Figure 16. The duality between the (2, 3)-braid arrangement B23 (left) and the diagonal of the
permutahedron Perm(3) (right).

Definition 4.15. For I, J ⊆ [n] and an ordered partition σ of [n] into k blocks, we say that
I dominates J in σ if for all ℓ ∈ [k], the first ℓ blocks of σ contain at least as many elements of I
than of J .

Theorem 4.16 ([LA22, Thm. 3.16]). A pair (σ, τ) of ordered partitions of [n] corresponds to a face
in the image of the geometric diagonal △(Perm(n),v) if and only if, for all (I, J) ∈ O(v), J does not
dominate I in σ or I does not dominate J in τ .

As the normal fan of the permutahedron Perm(n) is the fan defined by the braid arrangement Bn,
we obtain by Proposition 4.7 the following connection between the diagonal of Perm(n) and the
(2, n)-braid arrangement Bn2 studied in Part I. This connection is illustrated in Figure 16.

Proposition 4.17. The inclusion poset on the faces in the image of the diagonal △(Perm(n),v) is
isomorphic to the reverse inclusion poset on the faces of the (2, n)-braid arrangement Bn2 .
Remark 4.18. To be more precise, the diagonal △(Perm(n),v) is dual to the a-braid arrange-
ment Bn2 (a) where the translation matrix a has two rows, with first row a1,j = 0 and second
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row a2,j = vj − vj+1 for all j ∈ [n − 1]. Since v is generic with respect to Perm(n), we
have

∑
i∈I vi ̸=

∑
j∈J vj for all (I, J) ∈ U(n), so that a is indeed generic.

Remark 4.19. Similarly, the combinatorics of the (ℓ− 1)st iteration of a diagonal of the permuta-
hedron Perm(n) is given by the combinatorics of the (ℓ, n)-braid arrangement.

Finally, the permutahedron Perm(n) is not magical in the sense of Proposition 4.8. See also
Example 5.25.

Proposition 4.20 ([LA22, Sect. 3]). For any n > 3 and any generic vector v, the diagonal△(Perm(n),v)

of the permutahedron Perm(n) does not satisfy the magical formula. Namely, we have the strict
inclusion

Im△(Perm(n),v) ⊊
⋃

F,G faces of Perm(n)
maxv(F )≤minv(G)

F ×G.

Remark 4.21. Note that opposite diagonals have opposite orderings. Namely, O(−v) = O(v)op

where Oop := {(J, I) | (I, J) ∈ O}.
4.3. Enumerative results on cellular diagonals of the permutahedra. Relying on Proposition 4.17,
we now specialize the results of Part I to the case ℓ = 2 to derive enumerative results on the
diagonals of the permutahedra.

Observe that one can easily compute the full Möbius polynomials of the (2, n)-braid arrange-
ments B2n from Theorem 2.4:

µB2
1
(x, y) = 1,

µB2
2
(x, y) = xy − 2x+ 2,

µB2
3
(x, y) = x2y2 − 6x2y + 10x2 + 6xy − 18x+ 8,

µB2
4
(x, y) = x3y3 − 12x3y2 + 52x3y − 84x3 + 12x2y2 − 96x2y + 216x2 + 44xy − 182x+ 50,

µB2
5
(x, y) = x4y4 − 20x4y3 + 160x4y2 − 620x4y + 1008x4

+ 20x3y3 − 300x3y2 + 1640x3y − 3360x3

+ 140x2y2 − 1430x2y + 4130x2 + 410xy − 2210x+ 432.

We now focus on the number of vertices, regions, and bounded regions of the (2, n)-braid
arrangement B2n, to obtain the number of facets, vertices, and internal vertices of the diagonal of
the permutahedron Perm(n). The first few values are gathered in Tables 6 and 7.

Corollary 4.22. The diagonal of the permutahedron Perm(n) has

• 2(n+ 1)n−2 facets,
• n

(
n−1
k1

)
(n− k1)

k1−1(n− k2)
k2−1 facets corresponding to pairs (F1, F2) of faces of the per-

mutahedron Perm(n) with dim(F1) = k1 and dim(F2) = k2 (thus k1 + k2 = n− 1),

• n! [zn] exp

(∑

m≥1

Cm zm

m

)
vertices,

• (n− 1)! [zn−1] exp

(∑

m≥1

Cm zm
)

internal vertices,

where Cm :=
1

m+ 1

(
2m

m

)
denotes the mth Catalan number.

Proof. Use the duality between the (2, n)-braid arrangement B2n and the diagonal of the permuta-
hedron Perm(n) (see Proposition 4.17 and Figure 16), and specialize Theorems 2.18, 2.19 and 2.21
to the case ℓ = 2. □

Remark 4.23. For completeness, we provide an alternative simpler proof of the first point of
Corollary 4.22. By Proposition 2.3, we just need to count the (2, n)-partition trees. Consider a
(2, n)-partition tree F :=(F1, F2) (hence #F1 + #F2 = n + 1). Consider the intersection tree T
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n 1 2 3 4 5 6 7 8 9 . . . OEIS
facets 1 2 8 50 432 4802 65536 1062882 20000000 . . . [OEI10, A007334]
vertices 1 3 17 149 1809 28399 550297 12732873 343231361 . . . [OEI10, A213507]

int. verts. 1 1 5 43 529 8501 169021 4010455 110676833 . . . [OEI10, A251568]

Table 6. The numbers of facets, vertices, and internal vertices of the diagonal of the permuta-
hedron Perm(n) for n ∈ [9].

n = 1 n = 2 n = 3 n = 4
dim 0

0 1
dim 0 1

0 3 1
1 1

dim 0 1 2
0 17 12 1
1 12 6
2 1

dim 0 1 2 3
0 149 162 38 1
1 162 150 24
2 38 24
3 1

n = 5 n = 6
dim 0 1 2 3 4

0 1809 2660 1080 110 1
1 2660 3540 1200 80
2 1080 1200 270
3 110 80
4 1

dim 0 1 2 3 4 5
0 28399 52635 30820 6165 302 1
1 52635 90870 67580 7785 240
2 30820 47580 20480 2160
3 6165 7785 2160
4 302 240
5 1

Table 7. Number of pairs of faces in the cellular image of the diagonal of the permutahe-
dron Perm(n) for n ∈ [6].
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Figure 17. The bijection from rooted (ℓ, n)-partition trees (left) to spanning trees of Kn+1 con-
taining the edge (0, 1) (right).

of F with vertices labeled by the parts of F1 and of F2 and edges labeled by [n], root T at the part
of F1 containing vertex 1, forget the vertex labels of T , and send each edge label of T to the next
vertex away from the root, and label the root by 0. See Figure 17. The result is a spanning tree of
the complete graphKn+1 on {0, . . . , n} which must contain the edge (0, 1) (because we have chosen
the root to be the part of F1 containing 1). Finally, by double counting the pairs (T, e) where T
is a spanning tree of Kn+1 and e is an edge of T , we see that n times the number of spanning trees
of Kn+1 equals

(
n+1
2

)
times the number of spanning trees of Kn+1 containing (0, 1). Hence, by

Cayley’s formula for spanning trees of Kn+1, we obtain that the number of (2, n)-partition trees is
2n

n(n+ 1)
(n+ 1)n−1 = 2(n+ 1)n−2.
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5. Operadic diagonals

This section is devoted to the combinatorics of two specific diagonals of the permutahedra,
the LA and SU diagonals, which are shown to be the only operadic geometric diagonals of the
permutahedra.

5.1. The LA and SU diagonals. Recall from Section 4.2 that a geometric diagonal of the permu-
tahedron Perm(n) gives a choice of ordering of the sets U(n) (see Definition 4.13). As we consider
in this section diagonals for all permutahedra, we now consider families of orderings.

Definition 5.1. An ordering of U := {U(n)}n≥1 is a family O := {O(n)}n≥1 where O(n) is an order-
ing of U(n) for each n ≥ 1.

We will be focusing on the following two orderings and their corresponding diagonals.

Definition 5.2. The LA and SU orderings are defined by

• LA(n) := {(I, J) | {I, J} ∈ U(n) and min(I ∪ J) = min I} and
• SU(n) := {(I, J) | {I, J} ∈ U(n) and max(I ∪ J) = maxJ}.

Definition 5.3. The LA diagonal △LA (resp. SU diagonal △SU) of the permutahedron Perm(n) is
the geometric diagonal △(Perm(n),v) given by any vector v ∈ Rn satisfying

∑

i∈I

vi >
∑

j∈J

vj ,

for all (I, J) ∈ LA(n) (resp. (I, J) ∈ SU(n)).

First note that this definition makes sense, since vectors v = (v1, . . . , vn) such that O(v) is the
LA or SU order do exist: take for instance vi :=2−i+1 for△LA and vi :=2n−2i−1 for△SU. Second,
note that the LA and SU diagonals coincide up to dimension 2, but differ in dimension ≥ 3. The
former is illustrated in Figure 18, with the faces labeled by ordered (2, 3)-partition forests.

We will prove in Theorem 6.24 that △SU is a topological enhancement of the Saneblidze–Umble
diagonal from [SU04]. The faces of the LA and SU diagonals are described by the following
specialization of Theorem 4.16.

Theorem 5.4. A pair (σ, τ) of ordered partitions of [n] is not a face of the LA diagonal △LA if
and only if there exists (I, J) ∈ LA(n) such that J dominates I in σ and I dominates J in τ . The
same holds for the SU diagonal by replacing △LA by △SU and LA(n) by SU(n).

5.2. The operadic property. The goal of this section is to prove that the LA and SU diagonals are
the only two operadic diagonals which induce the weak order on the vertices of the permutahedra
(Theorem 5.13). We start by properly defining operadic diagonals.

Let A ⊔B = [n] be a partition of [n] where A := {a1, . . . , ap} and B := {b1, . . . , bq}. Recall that
the ordered partition B|A corresponds to a facet of the permutahedron Perm(n) defined by the

inequality
∑

b∈B xb ≥
(
#B+1

2

)
. This facet is isomorphic to the Cartesian product

(Perm(p) + q1[p])× Perm(q)

of lower dimensional permutahedra, where the first factor is translated by q1[p] := q
∑

i∈[p] ei, via

the permutation of coordinates

Θ : Rp × Rq
∼=−→ Rn

(x1, . . . , xp)× (xp+1, . . . , xn) 7−→ (xσ−1(1), . . . , xσ−1(n)) ,

where σ is the (p, q)-shuffle defined by σ(i) := ai for i ∈ [p], and σ(p+ j) := bj for j ∈ [q]. Note that
this map is a particular instance of the eponym map introduced in Point (5) of [LA22, Prop. 2.3].

Definition 5.5. A family of geometric diagonals △ := {△n : Perm(n)→ Perm(n)× Perm(n)}n≥1 of
the permutahedra is operadic if for every face A1| . . . |Ak of the permutahedron Perm(#A1 + · · ·+
#Ak), the map Θ induces a topological cellular isomorphism

△#A1
× . . .×△#Ak

∼= △#A1+...+#Ak
.
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Figure 18. The LA (and SU) diagonal of Perm(3) with faces labeled by ordered (2, 3)-partition
forests. (See also Figure 10 for the dual hyperplane arrangement.)

In other words, we require that the diagonal△ commutes with the map Θ, see [LA22, Sect. 4.2].
At the algebraic level, this property is called“comultiplicativity” in [SU04]. Note that in particular,
such an isomorphism respects the poset structures.

We will now translate this operadic property for geometric diagonals to the corresponding or-
derings O of U. We need the following standardization map (this map is classical for permutations
or words, but we use it here for pairs of sets).

Definition 5.6. The standardization of a pair (I, J) of disjoint subsets of [n] is the only parti-
tion std(I, J) of [#I +#J ] where the relative order of the elements is the same as in (I, J). More
precisely, it is defined recursively by

• std(∅,∅) :=(∅,∅), and
• if k :=#I +#J and ℓ := max(I ∪ J) belongs to I (resp. J), then std(I, J) = (U ∪ {k}, V )

(resp. std(I, J)=(U, V ∪{k})) where (U, V )=std(I∖{ℓ}, J) (resp. (U, V )=std(I, J ∖ {ℓ})).
For example, std({5, 9, 10}, {6, 8, 12}) = ({1, 4, 5}, {2, 3, 6}).
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Definition 5.7. An ordering O of U is operadic if every {I, J} ∈ U satisfies the following two
conditions

(1) std(I, J) ∈ O implies (I, J) ∈ O,
(2) if there exist I ′ ⊂ I, J ′ ⊂ J such that (I ′, J ′) ∈ O and (I∖I ′, J∖J ′) ∈ O, then (I, J) ∈ O.

We call indecomposables of O the pairs (I, J) ∈ O for which the only subpair (I ′, J ′) satisfying
Condition (2) above is the pair (I, J) itself.

Proposition 5.8. A geometric diagonal △ :=
(
△(Perm(n),vn)

)
n∈N of the permutahedra is operadic if

and only if its associated ordering O :=
(
O(vn)

)
n∈N is operadic.

Proof. Every operadic diagonal satisfies [LA22, Prop. 4.14], which amounts precisely to an operadic
ordering of U in the sense of Definition 5.7. □

We now turn to the study of the LA and SU orderings.

Lemma 5.9. The LA and SU orderings are operadic, and their indecomposables are the pairs whose
standardization are ({1}, {2}) and

({1, k + 2, k + 3, . . . , 2k − 1, 2k}, {2, 3, . . . , k + 1})(LA)

({k, k + 1, . . . , 2k − 1}, {1, 2, 3, . . . , k − 1, 2k})(SU)

for all k ≥ 1. The opposite orderings LAop and SUop are also operadic, and generated by the
opposite pairs.

Proof. We present the proof for the LA ordering, the proofs for the SU and opposite orders are
similar. First, we verify that LA is operadic. Condition (1) follows from the fact that standardizing
a pair preserves its minimal element. Condition (2) also holds, since whenever (I ′, J ′) and its
complement are in LA, we have min(I) = min{min(I ′),min(I ∖ I ′)}, and thus (I, J) itself is
in LA.

Second, we compute the indecomposables. Let (I, J) be a pair with standardization (LA). If
we try to decompose (I, J) as a non-trivial union, there is always one pair (I ′, J ′) in this union for
which min(I ∪ J) /∈ I ′, so we have min(I ′ ∪ J ′) = min J ′, which implies that (I ′, J ′) /∈ LA. Thus,
the pair (I, J) is indecomposable.

It remains to show that any pair (I, J) in LA whose standardization is not of the form (LA) can
be decomposed as a union of such pairs. Let us denote by (Ik, Jk) the standard form (LA) and let
(I, J) ∈ LA be such that std(I, J) ̸= (Ik, Jk). Then there exists i2 ∈ I∖min I such that i2 < max J .
This means that (I, J) can be decomposed as a union: if we write it as ({i1, . . . , ik}, {j1, . . . , jk}),
where each set ordered smallest to largest, then we must have min(I ∪ J) = i1 < i2 < jk, in
which case ({i2}, {jk}) and ({i1, i3, . . . , ik}, {j1, . . . , jk−1}) are both smaller LA pairs. Then it
must be the case that std(({i2}, {jk})) = ({1}, {2}), and std(({i1, i3, . . . , ik}, {j1, . . . , jk−1})) is
either (Ik−1, Jk−1), or we can repeat this decomposition. □

Remark 5.10. We note that the decomposition in Lemma 5.9 is one of potentially many different
decompositions of the pair (I, J). However, by definition of the LA order, for any decomposition
(I, J) = (

⊔
a∈A Ia,

⊔
a∈A Ja), we have std(Ia, Ja) ∈ LA for all a ∈ A. As such, all decompositions

of a pair (I, J), order it the same way.

Proposition 5.11. The only operadic orderings of U = {U(n)}n≥1 are the LA,SU,LAop and SUop

orderings.

Proof. We build operadic orderings inductively, showing that the choices for U(n), n ≤ 4 determine
higher ones. We prove the statement for the LA order, the SU and opposite orders are similar.
First, we decide to order the unique pair of U(2) as ({1}, {2}). The operadic property then
determines the orders of all the pairs of U(3) and U(4), except the pair {{1, 4}, {2, 3}}, for which
we choose the order ({1, 4}, {2, 3}). Now, we claim that all the higher choices are forced by the
operadic property, and lead to the LA diagonal. Starting instead with the orders ({1}, {2}) and
({2, 3}, {1, 4}) would give the SU diagonal, and reversing the pairs would give the opposite orders.
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Let ℓ ≥ 2 and suppose that for all k ≤ ℓ, we have given the pair

{Ik, Jk} := {{1, k + 2, k + 3, . . . , 2k − 1, 2k}, {2, 3, . . . , k + 1}}
the LA ordering (Ik, Jk). Then from Lemma 5.9, we know that the only {I, J} pair of or-
der ℓ + 1 that will not decompose, and hence be specified by the already chosen conditions,
is {Iℓ+1, Jℓ+1}. As such, the only way we can vary from LA is to order this element in the op-
posite direction (Jℓ+1, Iℓ+1). We now consider a particular decomposable pair {I ′m, J ′

m} where
I ′m := Im ⊔ {3}∖ {m+ 2} and J ′

m := Jm ⊔ {m + 2} ∖ {3}, of order m := ℓ + 2, that will lead to a
contradiction (see Example 5.12). On the one side, we can decompose {I ′m, J ′

m} = {Ia∪Ib, Ja∪Jb}
with Ia := {1,m+3, . . . , 2m}, Ja := {4, 5, . . . ,m+2}, Ib := {3} and Jb := {2}. By hypothesis, we have
the orders (Ja, Ia) and (Jb, Ib) which imply the order (J ′

m, I ′m) since our ordering is operadic. On
the other side, we can decompose {I ′m, J ′

m} = {Ic∪ Id, Jc∪Jd}, where Ic := {1,m+3, . . . , 2m−1},
Jc := {2, 5, . . . ,m + 1}, Id := {3, 2m} and Jd := {4,m + 2}. By hypothesis, we have the orders
(Ic, Jc) and (Id, Jd), which imply that (I ′m, J ′

m) since our ordering is operadic. We arrived at
a contradiction. Thus, the only possible operadic choice of ordering for {Iℓ+1, Jℓ+1} is the LA
ordering, which finishes the proof. □

Example 5.12. To illustrate our proof of Proposition 5.11, consider an operadic ordering O for
which the LA ordering holds for pairs of order 1 and 2, but is reversed for pairs of order 3, i.e.

({1}, {2}) ∈ O, ({1, 4}, {2, 3}) ∈ O, and ({2, 3, 4}, {1, 5, 6}) ∈ O.

Then, the pair {I ′4, J ′
4} = {{1, 3, 7, 8}, {2, 4, 5, 6}} admits two different orientations. In particular,

({4, 5, 6}, {1, 7, 8}) ∈ O and ({2}, {3}) ∈ O =⇒ ({2, 4, 5, 6}, {1, 3, 7, 8}) ∈ O and

({1, 7}, {2, 5}) ∈ O and ({3, 8}, {4, 6}) ∈ O =⇒ ({1, 3, 7, 8}, {2, 4, 5, 6}) ∈ O.

Combining Proposition 5.8 with Proposition 5.11, we get the main result of this section. Recall
that a vector induces the weak order on the vertices of the standard permutahedron if and only if
it has strictly decreasing coordinates (see Definition 4.12).

Theorem 5.13. There are exactly four operadic geometric diagonals of the permutahedra, given
by the LA and SU diagonals, and their opposites LAop and SUop. The LA and SU diagonals
are the only operadic geometric diagonals which induce the weak order on the vertices of the
permutahedron.

Remark 5.14. This answers by the negative a conjecture regarding unicity of diagonals on the
permutahedra, raised at the beginning of [SU04, Sect. 3], and could be seen as an alternative
statement. See Section 6 where we prove that the geometric SU diagonal is a topological enhance-
ment of the SU diagonal from [SU04].

5.3. Isomorphisms between operadic diagonals. Let P be a centrally symmetric polytope, and let
s : P → P be its involution, given by taking a point p ∈ P to its reflection s(p) with respect to
the center of symmetry of P . Note that this map is cellular, and induces an involution on the
face lattice of P . For the permutahedron Perm(n), this face poset involution is given in terms of
ordered partitions of [n] by the map A1| · · · |Ak 7→ Ak| · · · |A1.

The permutahedron Perm(n) possesses another interesting symmetry, namely, the cellular in-
volution r : Perm(n)→ Perm(n) which sends a point p ∈ Perm(n) to its reflection with respect to
the hyperplane of equation

⌊n/2⌋∑

i=1

xi =

⌊n/2⌋∑

i=1

xn−i+1.

This involution also respects the face poset structure. In terms of ordered partitions, it replaces
each block Aj in A1| · · · |Ak by the block r(Aj) := {r(i) | i ∈ Aj} where r(i) :=n− i+ 1.

The involution t : P × P → P × P , sending (x, y) to (y, x), takes a cellular diagonal to another
cellular diagonal. As we have already remarked in Definition 4.11, this involution sends a geometric
diagonal △ to its opposite △op.
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Theorem 5.15. For the permutahedron Perm(n), the involutions t and rs× rs are cellular isomor-
phisms between the four operadic diagonals, through the following commutative diagram

△LA (△LA)op

△SU (△SU)op

t

rs×rs rs×rs

t

Moreover, they induce poset isomorphisms at the level of the face lattices.

Proof. The result for the transpositions t and the commutativity of the diagram are straightfor-
ward, so we prove that rs × rs is a cellular isomorphism respecting the poset structure. First,
since r(min(I ∪ J)) = max(r(I) ∪ r(J)), we observe that the map (I, J) 7→ (r(J), r(I)) defines a
bijection between LA(n) and SU(n). Then, if σ is an ordered partition such that I dominates J
in σ (Definition 4.15), it must be the case that J dominates I in sσ, and consequently rJ dom-
inates rI in rsσ. As such, the domination characterization of the diagonals (Theorem 5.4), tells
us (σ, τ) ∈ △LA if and only if (rs(σ), rs(τ)) ∈ △SU. Finally, since both t, r and s preserve the
poset structures, so does their composition, which finishes the proof. □

Remark 5.16. There is a second, distinct isomorphism given by t(r × r). This follows from the
fact that s × s : △LA → (△LA)op is an isomorphism (and also for s × s : △SU → (△SU)op ), as
such the composite

t(r × r) : △LA (△LA)op (△SU)op △SUs×s rs×rs t

is also an isomorphism. This second isomorphism has the conceptual benefit of sending left shift
operators to left shift operators (and right to right), see Proposition 6.27.

5.4. Facets of operadic diagonals. We now aim at describing the facets of the LA and SU diagonals.
We have seen in Section 1.3 that facets of any diagonal of the permutahedron Perm(n) are in
bijection with (2, n)-partition trees, that is, pairs of unordered partitions of [n] whose intersection
graph is a tree. These pairs of partitions were first studied and called essential complementary
partitions in [Che69, CG71, KUC82]. Specializing Proposition 3.3, we now explain how to order
these pairs of partitions to get the facets of △LA and △SU.

Theorem 5.17. Let (σ, τ) be a pair of ordered partitions of [n] whose underlying intersection graph
is a (2, n)-partition tree. The pair (σ, τ) is a facet of the LA (resp. SU) diagonal if and only if
the minimum (resp. maximum) of every directed path between two consecutive blocks of σ or τ is
oriented from σ to τ (resp. from τ to σ).

Proof. We specialize Proposition 3.3 to the LA diagonal, the proof for the SU diagonal is similar.
Let v be a vector inducing the LA diagonal as in Definition 5.3. Without loss of generality, we place
the first copy of the braid arrangement centered at 0, and the second copy centered at v. From
Definition 1.12 and Remark 4.18, we get that A1,s,t = 0 and A2,s,t = vs− vt for any edges s, t. We
treat the case of two consecutive blocks A and B of σ, the analysis for τ is similar. The directed
path between A and B is a sequence of edges r0, r1, . . . , rq. Let us denote by I := {r0, r2, . . . }
de set of edges directed from σ to τ , and by J := {r1, r3, . . . } its complement. According to
Proposition 3.3, the order between A andB is determined by the sign of A1,r0,rq−

∑
p∈[q] Aip,rp−1,rp ,

where ip is the copy of the block adjacent to both edges rp−1 and rp. Thus, the order between A
and B is determined by the sign of

∑
i∈I vi −

∑
j∈J vj , which according to the definition of △LA

is positive whenever min(I ∪ J) ∈ I. Thus, the pair (σ, τ) ∈ △LA if and only if the minimum of
every directed path between two consecutive blocks of σ or τ is oriented from σ to τ . □

In the rest of the paper, we shall represent ordered (2, n)-partition trees (σ, τ) of facets by
drawing σ on the left, and τ on the right, with their blocks from top to bottom. The conditions
“oriented from σ to τ” in the preceding Theorem then reads as “oriented from left to right”, an
expression we shall adopt from now on.
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Example 5.18. Below are the two orderings of the (2, 7)-partition tree {15, 234, 6, 7}×{13, 2, 46, 57}
giving facets of the LA (left) and SU (right) diagonals, obtained via Theorem 5.17. Note that
ordered partitions should be read from top to bottom.

15

7

234

6

57

46

13

2 7

6

234

15

2

13

46

57

In the LA facet (left), we have 7 < 234, since in the path between the two vertices 7
7−→ 57

5−→
15

1−→ 13
3−→ 234, the minimum 1 is oriented from left to right. In this case, we have (I, J) =

({1, 7}, {3, 5}). Similarly, the path 57
5−→ 15

1−→ 13
3−→ 234

4−→ 46 imposes that 57 < 46, for
(I, J) = ({1, 4}, {3, 5}).
Remark 5.19. Note that forgetting the order in a facet of △LA, and then ordering again the (2, n)-
partition tree to obtain a facet of △SU, provides a bijection between facets that was not considered
in Section 5.3. However, this map is not defined on the other faces.

Example 5.20. The isomorphism rs × rs from Theorem 5.15 sends the LA facet from Exam-
ple 5.18 (left) to the following SU facet (right).

15

7

234

6

57

46

13

2

rs×rs−−−−→

37

1

456

2

13

24

57

6

Moreover, it sends the path 57
5−→ 15

1−→ 13
3−→ 234

4−→ 46 to the path 24
4−→ 456

5−→ 57
7−→ 37

3−→ 13,
where the maximum 7 is oriented from right to left, witnessing the fact that 24 < 13. The
associated (I, J) = ({1, 4}, {3, 5}) becomes (r(J), r(I)) = ({3, 5}, {4, 7}).
5.5. Vertices of operadic diagonals. We are now interested in characterizing the vertices that occur
in an operadic diagonal as pattern-avoiding pairs of partitions of [n]. These pairs form a strict
subset of the weak order intervals. We first need the following Lemma, which follows directly from
the definition of domination (Definition 4.15).

Lemma 5.21. Let σ be an ordered partition of [n] and let I, J ⊆ [n] be such that I dominates J
in σ. For an element i in I or J , we denote by σ−1(i) the index of the block containing it in σ.
Then, for any i ∈ I, j ∈ J , we have I ∖ i dominates J ∖ j in σ if and only if

(1) either σ−1(j) < σ−1(i) (meaning that j comes strictly before i in σ),
(2) or for all k between σ−1(i) and σ−1(j), the first k blocks of σ contain strictly more elements

of I than of J .

Definition 5.22. For k ≤ n, a permutation τ of [k] is a pattern of a permutation σ of [n] if there
exists a subset I := {i1 < · · · < ik} ⊂ [n] so that the permutation τ gives the relative order of
the entries of σ at positions in I, i.e. τu < τv :=σiu < σiv . We say that σ avoids τ if τ is not a
pattern of σ.

Example 5.23. The pairs of permutations (σ, τ) avoiding the patterns (21, 12) are precisely the
intervals of the weak order.

Theorem 5.24. A pair of permutations of [n] is a vertex of the LA (resp. SU) diagonal if and only if
for any k ≥ 1 and for any (I, J) ∈ LA(k) (resp. SU(k)) of size #I = #J = k it avoids the patterns

(j1i1j2i2 · · · jkik, i2j1i3j2 · · · ikjk−1i1jk),(LA)

resp. (j1i1j2i2 · · · jkik, i1jki2j1 · · · ik−1jk−2ikjk−1),(SU)

where I = {i1, . . . , ik}, J = {j1, . . . , jk} and i1 = 1 (resp. jk = 2k).
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Example 5.25. For each k ≥ 1, there are
(
2k−1
k−1,k

)
(k−1)!k! avoided standardized patterns. For k = 1,

both diagonals avoid (21, 12), so the vertices are intervals of the weak order. For k = 2,

• LA avoids (3142, 2314), (4132, 2413), (2143, 3214), (4123, 3412), (2134, 4213), (3124, 4312).
• SU avoids (1243, 2431), (1342, 3421), (2143, 1432), (2341, 3412), (3142, 1423), (3241, 2413).

As such, the vertices of LA and SU are a strict subset of all intervals of the weak order. Here is an
illustration of the patterns avoided for k = 4. The LA pattern is drawn on the left, the SU pattern
is drawn on the right, and they are in bijection under the isomorphism t(r×r) (Section 5.3), where
the bijection between elements is (i1, i2, i3, i4) 7→ (j′4, j

′
1, j

′
2, j

′
3) and (j1, j2, j3, j4) 7→ (i′1, i

′
2, i

′
3, i

′
4).

j1

i1

j2

i2

j3

i3

j4

i4

i2

j1

i3

j2

i4

j3

i1

j4

t(r×r)−−−−→

j′1

i′1

j′2

i′2

j′3

i′3

j′4

i′4

i′1

j′4

i′2

j′1

i′3

j′2

i′4

j′3

The alternate isomorphism t(s × s), provides an alternate way to establish a bijection between
these two patterns. The avoided patterns for higher k extend this crisscrossing shape.

Proof of Theorem 5.24. We give the proof for the LA diagonal, the one for the SU diagonal is
similar, and can be obtained by applying either of the two isomorphisms of Section 5.3. According
to Theorem 4.16, we have (σ, τ) /∈ △LA if and only if there is an (I, J) such that J dominates I
in σ and I dominates J in τ . It is clear that if a pair of permutations (σ, τ) contains a pattern of
the form (LA), then the associated (I, J) satisfies the domination condition. Thus, we just need
to show the reverse implication. We proceed by induction on the cardinality #I = #J . The case
of cardinality 1 is clear. Now suppose that for all (I, J) of size #I = #J ≤ m − 1, we have if J
dominates I in σ and I dominates J in τ , then (σ, τ) contains a pattern of the form (LA).

We need to show that this is still true for the pairs (I, J) of size #I = #J = m. Firstly, we need
only consider standardized I, J conditions, and pairs of permutations of [2m]. Indeed, if we define
(σ′, τ ′) := std(σ ∩ (I ∪ J), τ ∩ (I ∪ J)), and (I ′, J ′) := std(I ′, J ′), then if (σ, τ) satisfies the (I, J)
domination condition, this implies (σ′, τ ′) satisfies (I ′, J ′). Conversely, if (σ′, τ ′) has a pattern,
then this implies (σ, τ) has the same pattern, which yields the indicated simplification.

Let (σ, τ) be such a pair of permutations. Suppose the leftmost element i1 of I in σ is not 1, and
let us write j1 for the leftmost element of J in τ . Consider the pair (I ′, J ′) :=(I ∖ {i1}, J ∖ {j1}).
Using both cases of Lemma 5.21, we have J ′ dominates I ′ in σ, and I ′ dominates J ′ in τ , and we
can thus conclude by induction that (σ, τ) contains a smaller pattern.

So, we assume the leftmost element of I in σ is i1 = 1, and for n ≥ 1 we prove that,

(a) If (σ, τ) = (j1i1j2i2 . . . jn−1in−1winw
′, i2j1i3j2 . . . injn−1w

′′), and jn is the leftmost element
of J ∖ {j1, . . . , jn−1} in τ , then either w = jn, or it matches a smaller pattern.

(b) If (σ, τ) = (j1i1j2i2 . . . jn−1in−1w
′′, i2j1i3j2 . . . in−1jn−2wjn−1w

′′), and in is the leftmost ele-
ment of I ∖ {i1, . . . , in−1} in σ, then either w = in, or it matches a smaller pattern.

We prove (a), the proof of (b) proceeds similarly. Let jn be the leftmost element of J∖{j1, . . . , jn−1}
in τ . If w ̸= jn, then either (i) w consists of multiple elements of J including jn, or (ii) jn comes
after in in σ. Now consider the pair (I ′, J ′) :=(I ∖ {in}, J ∖ {jn}). As was the case for the proof
that i1 = 1, we have I ′ dominates J ′ in τ . To prove that J ′ dominates I ′ in σ, we split by the cases.
In case (i), we may apply condition (2) of Lemma 5.21. In case (ii), either in comes before jn, in
which case we meet condition (1) of Lemma 5.21, or jn comes before in. In this last situation, we
have condition (2) of Lemma 5.21 holds as in is the leftmost element of I ∖ {i1, . . . , in−1} in σ.
Thus, if w ̸= jn, by the inductive hypothesis, we match a smaller pattern.
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3|12

3|1|2

13|2

1|3|2

1|23

23|1

2|3|1

2|13

2|1|3

12|3

3|2|1

123

1|2|3

Figure 19. The Hasse diagram of the facial weak order for Perm(3).

Finally, using statements (a) and (b) above, we can inductively generate (σ, τ), determining j1
via (a), then i2 via (b), then j2 via (a), and so on. This inductive process fully generates σ, and
places all elements of τ except i1, yielding τ = i2j1i3j2 · · · ikjk−1wjkw

′′. However, as jk must be
dominated by an element of I, this forces w = i1 and w′′ = ∅, completing the proof. □
5.6. Relation to the facial weak order. There is a natural lattice structure on all ordered parti-
tions of [n] which extends the weak order on permutations of [n]. This lattice was introduced
in [KLN+01], where it is called pseudo-permutahedron and defined on packed words rather than
ordered partitions. It was later generalized to arbitrary finite Coxeter groups in [PR06, DHP18],
where it is called facial weak order and expressed in more geometric terms. We now recall a
definition of the facial weak order on ordered partitions, and use the vertex characterization of the
preceding section to show all faces of the LA and SU diagonal are intervals of this order.

Definition 5.26 ([KLN+01, PR06, DHP18]). The facial weak order on ordered partitions is the
transitive closure of the relations

σ1| . . . |σk < σ1| · · · |σi ⊔ σi+1| · · · |σk for any σ1| . . . |σk with maxσi < minσi+1,(4)

σ1| · · · |σi ⊔ σi+1| · · · |σk < σ1| . . . |σk for any σ1| . . . |σk with minσi > maxσi+1.(5)

The facial weak order recovers the weak order on permutations as illustrated in Figure 19.

Proposition 5.27. If (σ, τ) ∈ △LA, or (σ, τ) ∈ △SU, then σ ≤ τ under the facial weak order.

Proof. By Proposition 4.8, the faces (σ, τ) satisfy maxv σ ≤ minv τ under the weak order. Thus,
if we can show that σ ≤ maxv σ and minv τ ≤ τ under the facial weak order, then the result im-
mediately follows. If σ is a face of the permutahedra, then under both the LA, and SU orientation
vectors, the vertex maxv σ is given by writing out each block of σ in decreasing order, and the
vertex minv σ is given by writing out each block of σ in increasing order. Then under the facial
weak order σ ≤ maxv σ, as repeated applications of Equation (5) shows that a block of elements is
smaller than those same elements arranged in decreasing order. Similarly minv σ ≤ σ, as repeated
applications of Equation (4) shows that a sequence of increasing elements is smaller than those
same elements in a block. □
Example 5.28. The facet 13|24|57|6×3|17|456|2 ∈ △SU, satisfies the inequality through the vertices

13|24|57|6 < 3|1|4|2|7|5|6 < 3|1|7|4|5|6|2 < 3|17|456|2 .
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6. Shift lattices

In this section, we prove that the geometric SU diagonal △SU agrees at the cellular level with
the original Saneblidze-Umble diagonal defined in [SU04]. This involves some shift operations
on facets of the diagonal, which are interesting on their own right, and lead to lattice and cubic
structures. The proof is technical and proceeds in several steps: we introduce two additional
combinatorial descriptions of the diagonal, that we call the 1-shift and m-shift SU diagonals, and
show the sequence of equivalences

original △SU 1-shift △SU m-shift △SU geometric △SU.6.15 6.14 6.23

Throughout this section, we borrow notation from [SU22].

6.1. Topological enhancement of the original SU diagonal. We proceed to introduce different ver-
sions of the SU diagonal, and to prove that all these notions coincide.

6.1.1. Strong complementary pairs. We start by the following definition.

Definition 6.1. A strong complementary pair, or SCP for short, is a pair (σ, τ) of ordered partitions
of [n] where σ is obtained from a permutation of [n] by merging the adjacent elements which are
decreasing, and τ is obtained from the same permutation by merging the adjacent elements which
are increasing.

We denote by SCP(n) the set of SCPs of [n], which is in bijection with the set of permutations
of [n]. As is clear from the definition, the intersection graph of a SCP is a (2, n)-partition tree.

Example 6.2. The SCP associated to the permutation 3|1|7|4|2|5|6 is

13|247|5|6× 3|17|4|256

13

247

5

6

3

17

4

256

Observe that the permutation can be read off the intersection graph of the SCP by a vertical down
slice through the edges.

Notation 6.3. For a (2, n)-partition tree (σ, τ), we denote by σi,j (resp. τi,j) the unique oriented
path between blocks σi and σj (resp. τi and τj). Note that we make a slight abuse in notation, as
the path σi,j also depends on τ .

We can immediately characterize the paths between adjacent blocks in SCPs.

Proposition 6.4. For any SCP (σ, τ), we have

(1) σi,i+1 = (minσi,maxσi+1) and minσi < maxσi+1, and
(2) τi,i+1 = (max τi,min τi+1) and min τi+1 < max τi.

As a consequence, all SCPs are in both△LA and△SU, and constitute precisely the set of facets (σ, τ)
of these diagonals such that maxv(σ) = minv(τ).

Proof. First, the path description of (σ, τ) is a straightforward observation. Second, since the
minima of these paths are traversed from left to right, and the maxima from right to left, The-
orem 5.17 implies that SCPs are in both geometric operadic diagonals △LA and △SU. Third,
the fact that these constitute the facets (σ, τ) ∈ △LA or △SU satisfying maxv(σ) = minv(τ) can
be seen as follows. The maximal (resp. minimal) vertex of a face σ of the permutahedron with
respect to the weak order, is obtained by ordering the elements of each block of σ in decreasing
(resp. increasing) order. Thus, it is clear that the original permutation giving rise to a SCP (σ, τ)
is the permutation maxv(σ) = minv(τ), for any vector v inducing the weak order. Since both
diagonals agree with this order on the vertices, we have that SCPs are indeed facets of △LA and
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△SU with the desired property. The fact that these are all the facets with this property follows
from the bijection between SCP(n) and the permutations of [n]. □

6.1.2. Shifts and the SU diagonals. We recall the definition of the original SU diagonal of [SU04],
based on the exposition given in [SU22]. We then introduce two variants of this definition, the
1-shift and m-shift SU diagonals, which will be shown to be equivalent to the original one.

Definition 6.5. Let σ = σ1| · · · |σk be an ordered partition, and let M ⊊ σi be a non-empty subset
of the block σi. For m ≥ 1, the right m-shift RM , moves the subset M , m blocks to the right, i.e.

RM (σ) :=σ1| · · · |σi ∖M | · · · |σi+m ∪M | · · · |σk

while the left m-shift LM , moves the subset M , m blocks to the left, i.e.

LM (σ) :=σ1| · · · |σi−m ∪M | · · · |σi ∖M | · · · |σk.

Definition 6.6. Let σ denote either one of the two ordered partitions of [n] in an ordered (2, n)-partition
tree, and let M ⊊ σi. The right m-shift RM (resp. the left m-shift LM ) is

(1) block-admissible if minσi /∈M and minM > maxσi+m (resp. minM > maxσi−m),
(2) path-admissible if minM > maxσi,i+m (resp. minM > maxσi,i−m).

Remark 6.7. Observe that for a given subset M , an inverse to the right m-shift RM (resp. left
m-shift LM ) is given by the left m-shift LM (resp. right m-shift RM ). Moreover, one m-shift is
path-admissible if and only if its inverse is.

Example 6.8. Performing the 1-shifts R7 and L56 (they are both block and path admissible) of
the SCP (σ, τ) of Example 6.2, one obtains the pair R7(σ)× L56(τ), as illustrated below.

13|247|5|6× 3|17|4|256

13

247

5

6

3

17

4

256

R7×L56−−−−−→

13|24|57|6× 3|17|456|2

13

24

57

6

3

17

456

2

We shall concentrate on three families of shifts: block-admissible 1-shifts of subsets of various
sizes, path-admissible 1-shifts of singletons, and path-admissible m-shifts of singletons, for various
m ≥ 1, and show that specific sequences generate the same diagonal.

Definition 6.9. Let σ denote either one of the two ordered partitions of [n] in an ordered (2, n)-parti-
tion tree, and let M = (M1, . . . ,Mp) with M1 ⊊ σi1 , . . . ,Mp ⊊ σip for some p ≥ 1. Then the
sequence of right shifts RM(σ) :=RMp

. . . RM1
(σ) is

(1) block-admissible if we have 1 ≤ i1 < i2 < · · · < ip ≤ k − 1, and each RMj
is a block-

admissible 1-shift,
(2) path-admissible if each RMj

is a path-admissible mj-shift, for some mj ≥ 1.

Admissible sequences of left shifts are defined similarly and are denoted by LM(τ).

By convention, we declare the empty sequence of shift operators to be admissible, and to act
by the identity, i.e. we have R∅(σ) :=σ and L∅(τ) := τ .

Definition 6.10. The facets of the original SU diagonal, the 1-shift SU diagonal and the m-shift
SU diagonal are defined by the formula

△SU([n]) =
⋃

(σ,τ)

⋃

M,N

RM(σ)× LN(τ)

where the unions are taken over all SCPs (σ, τ) of [n], and respectively over all block-admissible
sequences of subset 1-shifts M ,N , over all path-admissible sequences of singleton 1-shifts, and
over all path-admissible sequences of singleton mj-shifts, for various mj ≥ 1.
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Remark 6.11. Observe that the left (resp. right) shifts acts on the right (resp. left) ordered par-
tition. In the analogous description for the LA diagonal △LA obtained at in Section 6.2, left and
right shifts act on the left and right ordered partitions, respectively.

6.1.3. First isomorphism between SU diagonals. We start by analyzing the original SU diagonal.

Proposition 6.12. Block-admissible sequences of subset 1-shifts, defining the original SU diagonal,
conserve

(1) the maximal element of any path between two blocks of the same ordered partition,
(2) the direction in which this element is traversed.

In particular, for a pair of ordered partitions (RM(σ), LN(τ)) obtained via a block-admissible
sequence of 1-shifts from a SCP (σ, τ), we have

maxRM(σ)i,j = maxσi,j and maxLN(τ)i,j = max τi,j(P)

and consequently

maxRM(σ)i,i+1 = maxσi+1 and maxLN(τ)i,i+1 = max τi.(B)

Note that in Equation (P), the maxima maxσi,j and max τi,j are maxima of paths, while in
Equation (B) the maxima maxσi+1 and max τi are maxima of blocks.

Proof. We consider the right shift operator; the left shift operator proceeds similarly. Let us
start with Point (1). As SCPs trivially meet the above conditions, we will prove the result in-
ductively by assuming that the result holds for (RM(σ), LN(τ)), and then showing that applying
a block-admissible operator RMk

, for Mk ⊊ σk, conserves the maximal elements of paths. By
the inductive hypothesis, we know that maxRM(σ)k,k+1 = maxσk+1. As RMk

is an admis-
sible operator, we know two things: firstly that minMk > maxRM(σ)k+1, and secondly that
maxσk+1 = maxRM(σ)k+1, as k is greater than the maximal index used by M. So combining
these, we know that

minMk > maxRM(σ)k+1 = maxσk+1 = maxRM(σ)k,k+1.(W)

A key consequence of this inequality is that the intersection graph of (RMk
RM(σ), LN(τ)) is a

bipartite tree conditional on (RM(σ), LN(τ)) being a bipartite tree: the shift will not disconnect
the graph as none of the shifted elements are in the path RM(σ)k,k+1. So, it is legitimate to speak
of unique paths between blocks.

We now explicitly explore how the shift operator RMk
alters paths. Throughout the rest of this

proof, we use the following shorthand: we denote by δk,k+1 :=RM(σ)k,k+1 the path between the
kth and (k + 1)st blocks in (RM(σ), LN(τ)), and by δk+1,k the same path reversed. Let γ be any
path between two blocks of (RM(σ), LN(τ)), and let γ′ be the path between the same blocks, by
indices, in (RMk

RM(σ), LN(τ)). There are four cases to consider.

i) the path γ does not contain an element of Mk. In this case, it is unaffected by the shift, so
γ′ = γ. We note that in light of Equation (W), the path δk,k+1 meets this case.

ii) the path γ contains one element m ∈Mk, i.e. it is of the form γ = αmβ, with α or β possibly
empty. We assume that m is incoming to RM(σ)k, the case when it is outgoing is similar.
We must have α ∩ δk,k+1 = ∅, since otherwise there would be an oriented loop from RM(σ)k
to itself. For the same reason, β ∩ δk,k+1 must be connected and starting at RM(σ)k. Then
there are two cases to consider:
(a) the path β does not use any steps of δk,k+1, in which case γ′ = αmδk+1,kβ. This is a

path in the tree of (RMk
RM(σ), LN(τ)) with no repeated steps, as such it must be the

unique minimal path.
(b) the path β uses steps of δk,k+1, in which case γ′ = αm(δk+1,k ∖ β)(β ∖ δk+1,k). This

follows, as we know that β must follow the path δk,k+1 for some time before diverging (β
could also be a subset of δk,k+1, in which case it will never diverge). As such, the path
(δk+1,k ∖ β) reaches the point of divergence from RM(σ)k+1 instead of RM(σ)k, and the
path (β ∖ δk+1,k) completes the rest of the route unchanged.
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iii) the path γ contains two elements of Mk. In this case we still have γ′ = γ (in path elements)
but γ′ will step through the (k + 1)st block instead of γ stepping through the kth block.

iv) the path γ contains more than two elements of Mk. This is impossible, as γ would not be a
minimal path on a tree.

Observe that all (non-trivial or non-contradictory) paths γ′ contain m ≥ minMk and either some
addition or deletion by δk,k+1. It thus follows from Equation (W) that max γ′ = max γ, since
in each case, the maximal element will either be m, or in α, or in β. This finishes the proof of
Point (1).

For Point (2), we need to see that the maximal element max γ = max γ′ is traversed in the same
direction. It is immediate for cases (i), (ii.a) and (iii); the condition is empty in the case (iv). For
the case (ii.b) it follows from the observation that the number of steps of β∩ δk,k+1 and δk,k+1∖β
have the same parity: since δk,k+1 has an even number of steps, either they both have an even
number of steps, or an odd number, which completes the proof. □
Corollary 6.13. Path-admissible sequences of singleton 1-shifts, defining the 1-shift SU diagonal,
conserve

(1) the maximal element of any path between two blocks of the same ordered partition,
(2) the direction in which this element is traversed.

Proof. By the definition of path-admissible 1-shifts (Definition 6.9), the outer inequality of Equa-
tion (W) holds by assumption. As such, can run the proof of Proposition 6.12 mutatis mutan-
dis. □

We are now in position to show that the 1-shift and m-shift descriptions are equivalent.

Proposition 6.14. The 1-shift and m-shift SU diagonals coincide.

Proof. It is clear that any path-admissible sequence of 1-shifts is a path-admissible sequence of m-
shifts, and thus that the facets of the 1-shift SU diagonal are facets of the m-shift SU diagonal. For
the reverse inclusion, we need to show that any m-shift can be re-expressed as a path-admissible
sequence of 1-shifts. We proceed by induction, and consider only the case of right shifts, the
case of left shifts is similar. For right 1-shifts, there is nothing to prove. Let (σ, τ) be a pair of
ordered partitions which has been generated only by k-shifts, for k < m. We wish to show that
any path-admissible right m-shift Rm

ρ on σ can be decomposed as a path-admissible 1-shift R1
ρ

followed by a path-admissible (m − 1)-shift Rm−1
ρ , which yields the result by induction. As Rm

ρ

is path-admissible, we know that ρ > maxσi,i+m, and we want to show that ρ > maxσi,i+m ≥
maxσi,i+1,maxR1

ρ(σ)i+1,i+m.

σi

σi+1

σi+m
α

β

γ

We define the oriented paths α :=σi,i+1 \ σi+1,i+m, β :=σi,i+1 \ σi,i+m and γ :=σi,i+m \ σi,i+1, as
illustrated above. Suppose that β is not empty, and moreover that maxσi+1,i+m > maxσi,i+m

or maxσi,i+1 > maxσi,i+m. Then we must have that maxβ > maxα,max γ. However, maxβ
cannot be the maximum of both σi,i+1 and σi+1,i+m. Indeed, in this case, it would be traversed
in two opposite directions, which is impossible since by the induction hypothesis (σ, τ) can be
generated by 1-shifts, and by Corollary 6.13 these conserve the maximal elements of paths and
their direction. We thus have maxσi,i+m ≥ maxσi,i+1,maxσi+1,i+m, and applying Corollary 6.13
again yields maxσi,i+m ≥ maxR1

ρ(σ)i+1,i+m as required. □
We stress that Equation (W) holds for m-shifts without us needing to perform shifts in increas-

ing order, or requiring minMk > maxRM(σ)k+1. We are now ready to prove that the m-shift
description is equivalent to the original one.

Theorem 6.15. The original and m-shift SU diagonals coincide.
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Proof. Since m-shift and 1-shift diagonals are equivalent (Proposition 6.14), it suffices to show that
the 1-shift and original SU diagonals coincide. We analyze the right shift operator, the case of the
left shift is similar. First, we observe that any block-admissible right shift RM (σ), for M ⊊ σk, can
be decomposed into a series of singleton right 1-shifts; since minM > maxσk,k+1 by the proof of
Proposition 6.12, we can shift the elements of M to the right, one after the other (in any order!).
This shows that any facet of the original SU diagonal is also a facet in the 1-shift SU diagonal.

For the reverse inclusion, we proceed by induction. We are required to show that if we apply a
right 1-shift to (RM(σ), LN(τ)), say (RρRM(σ), LN(τ)), then this can be re-expressed as a well-
defined subset shift operation (RM′(σ), LN(τ)). Suppose that prior to the 1-shift, the element ρ
lives in block ℓ, then we must have

1 ≤ i1 < · · · < ij ≤ ℓ < ij+1 < · · · < ip ≤ k − 1

for some j. If ij < ℓ, then we have RρRM(σ) = RMp · · ·R{ρ}RMj · · ·RM1(σ), and we are done.
Otherwise, if ij = ℓ, we set M ′

j :=Mj ∪ {ρ}. It is clear that RρRM(σ) = RMp
· · ·RM ′

j
· · ·RM1

(σ),

however, we need to check thatRM ′
j
is block-admissible, i.e. that minM ′

j > max(RMj−1
· · ·RM1

(σ))ij+1.

If we have ρ > minMj , then we are done since in this case minM ′
j = minMj and RMj

is block-
admissible. Otherwise, we have ρ = minM ′

j . Since by definition block-admissible shift operators
do not move the minimal element of a block, we have ρ > minRM(σ)ij = min(RMj−1

· · ·RM1
(σ))ij .

Then, by induction, Proposition 6.12 shows that ρ > maxσij+1 = max(RMj−1
· · ·RM1

(σ))ij+1,
where the equality follows as i1 < · · · < ij . This proves that RM ′

j
is block-admissible, completing

the inductive proof. □
6.1.4. Inversions. Our next goal is to prove the equivalence between the m-shift and geometric
SU diagonals (Theorem 6.23). As a tool for this proof, we now study inversions, or crossings in
the partition trees of the geometric SU diagonal.

Definition 6.16. Let σ be an ordered partition.

• The inversions of an ordered partition are I(σ) := {(i, j) : i < j ∧ σ−1(j) < σ−1(i)}.
• The anti-inversions of an ordered partition are J(σ) := {(i, j) : i < j ∧ σ−1(i) < σ−1(j)}.

We then define the inversions of an ordered partition pair I((σ, τ)) := I(τ) ∩ J(σ).

In words, the inversions of an ordered partition pair are those i < j pairs in which j comes in
an earlier block than i in τ , and i comes in an earlier block than j in σ.

Proposition 6.17. The set of inversions of a facet of the geometric SU diagonal is in bijection with
its set of edge crossings. Moreover, under this bijection, strong complementary pairs correspond
to facets with no crossings.

Proof. For the first part of the statement, we note that crossings are clearly produced by both
I(τ) ∩ J(σ) and I(σ) ∩ J(τ) (i.e. in the second case j appears before i in σ and i before j in
τ). However, the later cannot occur in a facet of the geometric △SU; this follows immediately
from the (I, J)-conditions for #I = #J = 1. The second part of the statement follows from the
fact that facets of the diagonal △SU with no crossings are in bijection with permutations. By
definition (Definition 6.1), from a partition one obtains a SCP, which is in the geometric △SU

(Proposition 6.4). In the other way around, given a SCP, one can read-off the partition in the
associated tree, which has no crossings, by a vertical down-slice of edges (Example 6.2). □

See Figure 20 for an example of this bijection.

Definition 6.18. We say that an edge crossing is an adjacent crossing if the two crossing elements
are in adjacent blocks of the partition tree (i.e. they are in blocks of the form σi|σi+1 or τi|τi+1).

Lemma 6.19. A facet (σ, τ) of the geometric SU diagonal has a crossing if and only if it has an
adjacent crossing.

Proof. An adjacent crossing is clearly a crossing. In the other direction, suppose there is a crossing
between an element of σi and an element of σj . If σi and σj are not adjacent, then the “triangle”
produced by the crossing elements encloses another σk such that i < k < j, and this produces
other crossings. We may repeat this process until an adjacent crossing is found. □
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6.1.5. Second isomorphism between SU diagonals. We now aim at showing that the m-shift and
the geometric SU diagonal coincide (Theorem 5.13). Recall from Remark 6.7 that left and right
path-admissible m-shifts are inverses to one another.

Proposition 6.20. Let (σ, τ) be a facet of the geometric SU diagonal △SU. Then, any pair of
ordered partitions obtained by applying a path-admissible m-shift to (σ, τ) is also in the geometric
SU diagonal.

Proof. We consider a right path-admissible shift Rρ, the left shift and dual result proceeds simi-
larly. Combining Corollary 6.13 and Proposition 6.14, we have that the maxima of paths between
consecutive vertices in (Rρ(σ), τ) are the same as the ones in (σ, τ), and are moreover traversed in
the same direction. Thus, all maxima of paths in (Rρ(σ), τ) are traversed from right to left, and
hence by Theorem 5.17, we have that (Rρ(σ), τ) is in the geometric SU diagonal. □

Lemma 6.21. Any facet (σ, τ) of the geometric SU diagonal △SU is mapped to a SCP by a path-
admissible sequence of inverse m-shifts.

Proof. We show that any facet (σ, τ) which has a crossing, and is hence not a SCP, admits an
inverse shift operation. This shows that a finite number of inverse shift operations converts any
facet to a SCP (if σ is an ordered partition of n with k blocks, then clearly less than nk inverse shifts
are possible). We consider the following partition of the set of facets with crossings, illustrated by
example in Example 6.22.

(1) All adjacent blocks are connected by paths of length 2.
(2) There exist adjacent blocks which are connected by a path of length 2k for k > 1.

(a) The maximal step of this path is not the last step.
(b) The maximal step of this path is the last step.

(i) The τ block containing the maximal step is not the greatest block.
(ii) The τ block containing the maximal step is the greatest block.

In Case (1), as (σ, τ) has a crossing, it has an adjacent crossing by Lemma 6.19. This adjacent
crossing is of the following form (we illustrate the case where the crossing happens on the left, the
case when it happens on the right is similar):

σi

σi+1

τj

τk

ρ

b

c R−1
ρ−−−→

σi ⊔ ρ

σi+1 ∖ ρ

τj

τk

ρ

b

c

By the path characterization of the geometric SU diagonal (Theorem 5.17), the fact that τj < τk
implies that ρ > b, and the fact that σi < σi+1 implies that b > c. Thus, we have ρ > maxσi,i+1,
which implies that a path-admissible left shift R−1

ρ can be performed.
In Case (2.a), consider the two adjacent blocks say σi|σi+1 (the τ case is similar), let ρ := maxσi,i+1

denote the maximum of the path between them, and let m ≥ 1 be such that ρ steps into σi+1+m.
Since maxσi,i+1+m = maxσi,i+1 = ρ the definition of the geometric SU diagonal implies that the
block σi+1+m comes after the block σi, and by assumption after the block σi+1. Thus, we know
that m > 1, and using dashed lines to denote paths of length ≥ 1 we have the following picture

σi

σi+1

σi+1+m

ρ
R−1

ρ−−−→

σi

σi+1 ⊔ ρ

σi+1+m ∖ ρ

ρ

As we have ρ = maxσi,i+1 > maxσi+1+m,i+1, an inverse m-shift operation can be performed.
In the Case (2.b.i), there exists j,m > 0 such that τj−m is the block of τ which contains the

maximal element ρ, and τj is any greater block on the path from σi to σi+1. Then we may apply
the following inverse m-shift operator.
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σi

σi+1

τj−m

τjρ

L−1
ρ−−−→

σi

σi+1

τj−m ∖ ρ

τj ⊔ ρ
ρ

There remains to be treated Case (2.b.ii). We consider the path σi,i+1 :=(i1, j1, i2, . . . , ik, ρ) to
be of length 2k, k > 1. We denote by τj the block of τ containing the maximal step ρ of this path,
which by hypothesis is the last block of τ . Let σi−n be the last block of σ which is attained by
the path σi,i+1 before the block σi+1. We must have n > 1, since ρ is the last step and σi|σi+1

are adjacent blocks. The situation can be pictured as on the left.

σi−n

σi

σi+1

τj−m

τj
ρ

ik
L−1

ρ′−−−→

σi−n

σi

σi+1

τj−m ∖ ρ′

τj ⊔ ρ′
ρ

ik

Now let ρ′ := maxσi,i−n be the maximum of the path σi,i−n = (i1, j1, i2, . . . , ik−1, jk−1), and
let τj−m, m ≥ 1 be the block of τ containing ρ′. We want to show that an inverse left m-shift can
bring ρ′ back to τj , i.e. we need ρ′ > max τj−m,j . As ρ′ := maxσi,i−n, and apart from the step ik
we have τj−m,j ⊂ σi,i−n, we just need to show that ρ′ > ik. To see that this is indeed the case, it
suffices to look at the last steps

τl
jk−1−→ σi−n

ik−→ τj
ρ−→ σi+1

of the path σi,i+1. By the definition of the geometric SU diagonal, the fact that τl < τj implies
that jk−1 > ik, and thus that ρ′ > ik, which finishes the proof. □

Example 6.22. Here are examples of each of the cases in the proof of Lemma 6.21. We display cases
(1), (2.a), (2.b.i) and, (2.b.ii) respectively, reading the diagrams from top-left to bottom-right.

1

23

3

12

R−1
3−−−→

13

2

3

12 ,

1

2

34

14

23 R−1
4−−−→

1

24

3

14

23

13

2

4

34

12 L−1
4−−−→

13

2

4

3

124

,

12

3

4

23

14 L−1
3−−−→

12

3

4

2

134

Note that, as we have chosen minimal illustrative examples, each inverse m-shift is an inverse
1-shift, and after each shift we obtain a SCP. This is not typically the case.

Theorem 6.23. The m-shift and the geometric SU diagonals coincide.

Proof. We first note that SCPs are known elements of both the m-shift and the geometric SU
diagonals (Proposition 6.4). The proof that every facet of the m-shift △SU is in geometric △SU

follows from the closure of △SU under the shift operators (Proposition 6.20). The proof that every
facet of geometric △SU is in shift △SU follows from the closure of △SU under the inverse shift
operator (Proposition 6.20) and the fact that every facet is sent to a SCP after a finite number of
inverse shifts (Lemma 6.21). In particular, for any given facet in geometric △SU, this provides a
SCP and a sequence of shifts to form it, showing it is a facet of m-shift △SU. □

Combining Theorem 6.15 and Theorem 6.23, we obtain the desired equivalence between the
original SU diagonal from [SU04] and the geometric SU diagonal from Definition 5.3.
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Theorem 6.24. The original and geometric SU diagonals coincide.

6.2. Shifts under the face poset isomorphism. Having proven the equivalence of the original and
geometric SU diagonals, we now use the face poset isomorphisms between the geometric LA and
SU diagonals from Section 5.3 to translate results and combinatorial descriptions from one to the
other. Under the isomorphism t(r× r) : △LA →△SU from Remark 5.16, we get a straightforward
analogue of Definition 6.9 for the LA diagonal. Firstly, the morphism r × r exchanges max and
min, which yields the following “dual” notions of admissibility.

Definition 6.25. Let σ denote either one of the two ordered partitions of [n] in a (2, n)-partition
tree, and let M ⊊ σi. The right m-shift RM (resp. the left m-shift LM ) is

(1) block-admissible if maxσi /∈M and maxM < minσi+m (resp. maxM < minσi−m),
(2) path-admissible if maxM < minσi,i+m (resp. maxM < minσi,i−m).

Secondly, as the morphism t switches our ordered partitions, this means that the LA lefts
shifts will act on the left ordered partition, and the LA right shifts will act on the right ordered
partition. Consequently, admissible sequences of LA shifts are defined similarly to Definition 6.9
(simply replace σ with τ). Which provides an analogue of Definition 6.10 for the LA diagonal.

Definition 6.26. The facets of the subset shift, 1-shift and m-shift LA diagonals are given by the
formula

△LA([n]) =
⋃

(σ,τ)

⋃

M,N

LM(σ)×RN(τ)

where the unions are taken over all SCPs (σ, τ) of [n], and respecitvely over all block-admissible
sequences of subset 1-shifts M ,N , over all path-admissible sequences of singleton 1-shifts, and
over all path-admissible sequences of singleton mj-shifts, for various mj ≥ 1.

We now formally verify that the isomorphism t(r× r) relates these shift definitions as claimed.

Proposition 6.27. Let (σ, τ) be a facet of △LA. For each type of LA shift, let M ,N be admissible
sequences of this type, then

t(r, r)(LN(σ), RM(τ)) = (RrM(rτ), LrN(rσ))

where rM :=(rM1, . . . , rMp) and rN (defined similarly) are admissible sequences of SU shifts of
the same type.

Proof. As reversing the elements then shifting them is the same as shifting the elements then
reversing them, it is clear that the equality holds if rM, rN are admissible sequences of SU shifts.
As such, we must simply verify the admissibility, and given the equivalence of the various shift
definitions, we just do this for path-admissibility of 1-shifts. Consider a right shift RM , for M ∈ σi,
which is path-admissible in the LA sense (Definition 6.25). Then, we have maxM < minσi,i+1

which implies that min rM > max rσi,i+1, and thus the right shift RrM is path-admissible in the
SU sense (Definition 6.9). Here, rM ∈ rσi is interpreted as being in a block of the right partition
(τ in the notation of the definition). So, if M = (Mi1 , . . . ,Mip), define r(M) :=(rM1, . . . , rMp),
and from the prior it is clear this is a path-admissible sequence of SU shifts, finishing the proof. □

Thus, given t(r × r) is an isomorphism of the geometric diagonals (Remark 5.16), and the
geometric SU diagonal coincides with the shift SU diagonals (Section 6.1.2), we immediately
obtain the following statement.

Proposition 6.28. The geometric LA diagonal and all shift LA diagonals coincide.

Remark 6.29. The isomorphism rs × rs : △LA → △SU, identified in Theorem 5.15, also sends
shifts operators to shift operators, but it sends left shift operators to right shift operators and vice
versa. The LAop and SUop diagonals also admit obvious dual shift descriptions.

We now explore in example how the isomorphism t(r × r) translates the shift operators.
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Example 6.30. The isomorphism t(r × r) sends the SCP (σ, τ) :=(5|17|4|236, 57|146|3|2) to the
SCP (σ′, τ ′) :=(13|247|5|6, 3|17|4|256). The corresponding (2, n)-partition trees present a clear
symmetry

5

17

4

236

57

146

3

2

t(r×r)−−−−→

13

247

5

6

3

17

4

256

We now illustrate all possible path admissible LA 1-shifts of (σ, τ) and all possible path admissible
SU 1-shifts of (σ′, τ ′). We first display how the LA left shifts act on σ, and the SU left shifts act
on τ ′. The LA shifts have been drawn so that the leftmost arrow shifts the smallest element, and
the SU shifts have been drawn so that the leftmost arrow shifts the largest element. As such, the
face poset isomorphism t(r× r) directly translates one diagram to the other. The specific element
being shifted can be inferred by the source and target of the arrow.

5|17|4|236

15|7|4|236 5|17|24|36 5|17|34|26

15|7|24|36 15|7|34|26 5|17|234|6

15|7|234|6

3|17|4|256

37|1|4|256 3|17|46|25 3|17|44|26

37|1|46|25 36|17|44|26 3|17|456|2

37|1|456|2
We now illustrate all the possible LA right shifts acting on τ

σ × 57|146|3|2 σ × 57|46|13|2 σ × 57|46|3|12ρ=1 ρ=1

and all possible SU right shifts acting on σ′

13|247|5|6× τ ′ 13|24|57|6× τ ′ 13|24|5|67× τ ′.
ρ=7 ρ=7

No other shifts are possible; observe for instance that we cannot perform the LA left shift

15|7|234|6 × 57|46|13|2 ρ=2−−→ 15|27|34|6 × 57|46|13|2 as the minimal path connecting 234 and 7
contains 1, which is smaller than 2 (see Example 5.18). We shall see in Section 6.3, that these
diagrams are the Hasse diagrams of lattices.

Example 6.31. It was observed in [LA22] that the LA and SU diagonals coincided up until n = 3,
however due to their dual shift structure they generate the non-SCP pairs in a dual fashion. In
particular, the two center faces of the subdivided hexagon of Figure 18 are generated by

13

2

3

12

RSU
3−−−→ 1

23

3

12

12

3

2

13

LSU
3−−→ 12

3

23

1

and

1

23

13

2

RLA
1−−−→ 1

23

3

12

2

13

23

1

LLA
1−−−→ 12

3

23

1

where we have aligned each element, of each diagonal, vertically with its dual element.

6.3. Shift lattices. In this section, we show that the 1-shifts of the operadic diagonals △LA

and △SU, define the covering relations of a lattice structure on the set of facets. More precisely, we
show that each SCP is the minimal element of a lattice isomorphic to a product of chains, where
the partial order is given by shifts. Given the bijection between SCPs and permutations, and our
prior enumeration of the facets of the diagonal, this produces two new statistics on permutations.
In addition, later in Section 6.4, we will use the lattice structure to relate the cubical and shift
definitions of the △SU diagonal.
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Definition 6.32. The LA shift poset on the set of facets (σ, τ) ∈ △LA is defined to be the transitive
closure of the relations (σ, τ) ≺ (Lρσ, τ) and (σ, τ) ≺ (σ,Rρτ), for all LA path-admissible 1-shifts
Lρ and Rρ. The SU shift poset is defined similarly. Then, for each permutation v of [n], we

define the subposet ▷◁

LA
v (resp. ▷◁

SU
v ) to be the set of all admissible LA (resp. SU) shifts of the

associated SCP.

Given the shift definitions of △SU and △LA (Definitions 6.10 and 6.26), the subposets ▷◁

LA
v

and ▷◁

SU
v are clearly connected components of their posets, with a unique minimal element corre-

sponding to the SCP. We now aim to prove they are also lattices (Proposition 6.37).

Lemma 6.33. The m-shift operators defining the facets of an operadic diagonal commute. That is,
whenever the successive composition of two m1, m2-shifts is defined on a facet of the LA or SU
diagonal, the reverse order of composition is also defined, and the two yield the same facet.

Proof. A △SU (resp. △LA) m-shift is defined when ρ is greater (resp. smaller) than the maximal
(resp. minimal) element of the connecting path. Combining Corollary 6.13 and Proposition 6.14,
we know m-shifts conserve the maximal (minimal) elements of paths and their directions. As such,
we can commute any two shift operators. □

Definition 6.34. Let v be a permutation of [n], and (σ, τ) the SCP corresponding to v. For ρ ∈ [n],
we define the LA left height and right height of ρ to be

ℓv(ρ) := max({0} ∪ {m > 0 : Lρ(σ) is a path admissible LA m-shift}),
rv(ρ) := max({0} ∪ {m > 0 : Rρ(τ) is a path admissible LA m-shift}).

The left and right heights for the SU diagonal are defined similarly.

The height of an element ρ in a SCP can be explicitly calculated as follows.

Lemma 6.35. Let (σ, τ) be the SCP corresponding to a permutation v. Then, the right LA height
rv(ρ) (resp. the left LA height ℓv(ρ)) of ρ ∈ [n] is given by the number of consecutive blocks of σ
(resp. of τ) to the right (resp. left) of the one containing ρ whose minima are larger than ρ. The
SU heights are obtained similarly by considering blocks whose maxima are smaller than ρ.

Proof. We consider the right SU height, the other cases are similar. As (σ, τ) is a SCP, we have
maxσk,k+1 = maxσk+1 for all k ≥ 1. Moreover, from the equivalence between 1-shifts and m-
shifts (Proposition 6.14), there exists a m-shift of ρ from σi to σi+m if, and only if, there exists
a sequence of m consecutive 1-shifts, each satisfying ρ > maxσj,j+1 = maxσj+1. Thus, these
iterated 1-shifts will be path-admissible until the first failure at j = rv(ρ) + 1. □

Remark 6.36. The height calculations can also be reformulated directly in terms of the permuta-
tion. For instance, for the SU diagonal rv(ρ) is the number of consecutive descending runs, to the
right of the descending run containing ρ, whose maximal element is smaller than ρ.

Proposition 6.37. The subposets ▷◁

LA
v and ▷◁

SU
v , are lattices isomorphic to products of chains

▷◁

LA
v
∼=
∏

ρ∈[n]

[0, ℓv(ρ)]×
∏

ρ∈[n]

[0, rv(ρ)] and ▷◁

SU
v
∼=
∏

ρ∈[n]

[0, rv(ρ)]×
∏

ρ∈[n]

[0, ℓv(ρ)] ,

where [0, k] is the chain lattice 0 < 1 < · · · < k, for k ≥ 0.

Proof. We denote by Lm
ρ (resp. Rm

ρ ) a left (right) m-shift of ρ for m > 0, and we let it be the
identity if m = 0. By the commutativity of m-shift operators (Lemma 6.33), and the existence

of unique heights for each element (Lemma 6.35), every element of ▷◁

LA
v admits a unique shift

description (Lℓn
n . . . Lℓ1

1 (σ), Rrn
n · · ·Rr1

1 (τ)), where 0 ≤ ℓρ ≤ ℓv(ρ) and 0 ≤ rρ ≤ rv(ρ). Thus, we
identify it with the pair of tuples (ℓ1, . . . , ℓn) × (r1, . . . , rn). This is clearly an isomorphism of
lattices. □
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Figure 20. The shift lattice ▷◁

SU
v for v = 4|3|1|2. Each facet is drawn next to a graph encoding its

inversions (Definition 6.16). If (i, j) ∈ J(σ), then a green edge connects (i, j), and if (i, j) ∈ I(τ),
then a blue dotted edge connects (i, j). Consequently, I((σ, τ)) is encoded by the presence of both
edges, and also the crossings, by Proposition 6.17.

Note that the maximal element of ▷◁v (for either diagonal) is given by shifting each element
of (σ, τ) by its maximal shift. The joins and meets of any two elements are also thus given by
isomorphism to the product of chains. For instance, in the case of meets,

(ℓ1, . . . , ℓn, r1, . . . , rn) ∧ (ℓ′1, . . . , ℓ
′
n, r

′
1, . . . , r

′
n) =

(min{ℓ1, ℓ′1}, . . . ,min{ℓn, ℓ′n},min{r1, r′1}, . . . ,min{rn, r′n})
For clear examples of the Hasse diagrams corresponding to our lattices, we direct the reader to
Example 6.30, and Figure 20. We note that Figure 20 also illustrates that there is no general
relation between the shift lattice structure and inversions sets. In particular, the shift lattices
are not sub-lattices of the facial weak order (discussed in Section 5.6), as 24|13 and 234|1 are
incomparable.

Remark 6.38. As a consequence of Proposition 6.37, the facets of the operadic diagonals are disjoint
unions of lattices. However, any lattice L on permutations (such as the weak order) induces a

lattice on the facets as follows. For every v ∈ L, we can substitute the lattice ▷◁

LA
v (or ▷◁

SU
v ) into

the permutation v. In particular, every element which was covered by v is now covered by the

minimal element of ▷◁

LA
v , and every element which was covering v now covers the maximal element

of ▷◁

LA
v .

Given our previously obtained formulae for the number of elements in the diagonal (Section 4.3),
and the results of this section, we obtain the following statistics on permutations.

Corollary 6.39. Using the heights of either diagonal,

2(n+ 1)n−2 =
∑

v∈Sn

∏

ρ∈[n]

(ℓv(ρ) + 1)(rv(ρ) + 1)
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Moreover, denoting by Sk1
n ⊆ Sn the set of permutations with k1 ascending runs, and consequently

k2 = n− 1− k1 descending runs, we have

n

(
n− 1

k1

)
(n− k1)

k1−1(n− k2)
k2−1 =

∑

v∈Sk1
n

∏

ρ∈[n]

(ℓv(ρ) + 1)(rv(ρ) + 1).

Proof. This follows directly from Corollary 4.22, with the observation that shifts conserve the
number of blocks, and hence the dimensions of the faces. □

6.4. Cubical description. In this section, we recall the cubical definition of the SU diagonal
from [SU22] and explicitly relate it to their shift description, using a new proof that exploits
the lattice description of the diagonal (Section 6.3). Then we construct an analogous cubical
definition of the LA diagonal, transferring the cubical formulae via isomorphism.

6.4.1. The cubical SU diagonal. We define inductively a subdivision2SU
n−1 of the (n−1)-dimensional

cube which is combinatorially isomorphic to the permutahedron Perm(n) (Proposition 6.42).

Construction 6.40. Given a (n − k)-dimensional face σ = σ1| · · · |σk of the (n − 1)-dimensional
permutahedron Perm(n), we set nj :=#σk−j+1∪· · ·∪σk, and define a subdivision Iσ := I1∪· · ·∪Ik
of the interval [0, 1] by the following formulas

Ij :=





[0, 1− 2−nj ] if j = 1,

[1− 2−nj−1 , 1− 2−nj ] if 1 < j < k,

[1− 2−nj−1 , 1] if j = k.

Let 2SU
0 be the 0-dimensional cube (a point), trivially subdivided by the sole element 1 of Perm(1).

Then, assuming we have constructed the subdivision 2SU
n−1 of the (n − 1)-cube, we construct 2SU

n

as the subdivision of 2SU
n−1× [0, 1] given, for each face σ of 2SU

n−1, by the polytopal complex σ× Iσ.
We label the faces σ × I of the subdivided rectangular prism σ × Iσ by the following rule

σ × I :=





σ1| · · · |σk|n+ 1 if I = {0},
σ1| · · · |σj |n+ 1|σj+1| · · · |σk if I = Ij ∩ Ij+1 with 1 ≤ j ≤ k − 1,

n+ 1|σ1| · · · |σk if I = {1},
σ1| · · · |σj ∪ {n+ 1}| · · · |σk if I = Ij with 1 ≤ j ≤ k.

(I)

This defines a subdivision 2SU
n of the n-cube.

Figure 21 illustrates this subdivision for the first few dimensions. We indicate, in bold, the
embedding 2SU

n−1 ↪→ 2SU
n induced by the natural embedding Rn−1 ↪→ Rn. Only the vertices of 2SU

3

are labelled, but its edges, facets and outer face are all identified with the expected elements of
Perm(4).

Remark 6.41. A consequence of the construction is that each edge of 2SU
n is parallel to one of the

canonical basis vectors ei of Rn, and corresponds to shifting the element i+ 1 of [n+ 1]∖ {1}.
Proposition 6.42. The polytopal complex 2SU

n is combinatorially isomorphic to the permutahedron
Perm(n+ 1).

Proof. By construction it is clear that the faces of 2SU
n and Perm(n + 1) are in bijection, and

that this bijection preserves the dimension. It remains to show that this bijection is a poset
isomorphism. Let σ1| . . . |σi|σi+1| . . . |σk ≺ σ1| . . . |σi ∪ σi+1| . . . |σk be a covering relation in the
face poset of Perm(n+1). We need to see that the corresponding faces F,G of 2SU

n satisfy F ≺ G.
From Equation (I) this clearly holds for lines. Since any face of 2SU

n is a product of lines, the
result follows by induction on the dimension of the faces. □

We now unpack how certain properties of Perm(n) have been encoded in the cubical structure
of 2SU

n . This will later allow us to construct a cubical formula for the diagonal through maximal
pairings of k-subdivision cubes of 2SU

n , which we now introduce.
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1|2 2|112 ↪→

3|1|2 3|2|1

1|3|2 2|3|1

1|2|3 2|1|3

3|12

13|2 13|2

1|23 2|13
12|3

↪→

4|2|1|3 4|2|3|1 4|3|2|1

4|1|2|3 4|1|3|2 4|3|1|2

2|4|1|3 2|4|3|1 3|4|2|1

1|4|2|3 1|4|3|2 3|4|1|2

2|1|4|3 2|3|4|1 3|2|4|1

1|2|4|3 1|3|4|2 3|1|4|2

2|1|3|4 2|3|1|4 3|2|1|4

1|2|3|4 1|3|2|4 3|1|2|4

Figure 21. Cubical realizations 2SU
1 ,2SU

2 and 2SU
3 of the permutahedra Perm(2), Perm(3) and

Perm(4), respectively, from Construction 6.40.

Definition 6.43. For k ≥ 0, a k-subdivision cube of 2SU
n is a union of k-faces of 2SU

n whose
underlying set is a k-dimensional rectangular prism.

An important example of a k-subdivision cubes are the k-faces of 2SU
n (other examples are

provided in Example 6.48).

Lemma 6.44. A k-subdivision cube has a unique maximal (resp. minimal) vertex with respect to
the weak order on permutations.

Proof. By construction, the edges of 2SU
n are parallel to the basis vectors of Rn (Remark 6.41),

and correspond to inversions on permutations. Thus, the vector v :=(1, . . . , 1) induces the weak
order on the vertices of 2SU

n . Since each k-subdivision cube is a rectangular prism whose edges
are not perpendicular to v, the scalar product with v is maximized (resp. minimized) at a unique
vertex. □

Definition 6.45. The maximal (resp. minimal) k-face of a k-subdivision cube, with respect to the
weak order, is the unique k-face in the subdivision cube which contains the maximal (resp. minimal)
vertex.

Construction 6.46. For a k-dimensional face σ of the cubical permutahedron 2SU
n , we construct

the unique maximal k-subdivision cube, with respect to inclusion, whose maximal (resp. minimal)
k-face with respect to the weak order is σ.

We only treat the case for the maximal k-face σ, the minimal face proceeds similarly. We build
the maximal subdivision cubes inductively. Let σ be an edge of 2SU

n , and let v be its maximal
vertex. Let ρ ∈ [n + 1] ∖ {1} be the element shifted by this edge (Remark 6.41). Shifting this
element to the right as far as possible (ρ will be shifted all the way to the right, or be blocked by
a larger element), we get the desired 1-subdivision line.

Suppose that we have constructed maximal subdivision cubes up to dimension k, and let σ be a
(k+ 1)-face of 2SU

n , with maximal vertex v. Consider the k+ 1 elements of [n], which correspond
to dimensions spanned by σ (Remark 6.41), and let ρ be the largest such element. Let σL be
the 1-face, with maximal vertex v, whose only non-trivial dimension corresponds to ρ. From the
initial step above, there is a unique maximal 1-subdivision line L with maximal 1-face σL. Let
σC be the k-face, with maximal vertex v, spanned by the complement of ρ in [n + 1] ∖ {1}. By
induction, there is a maximal k-subdivision cube C with maximal k-face σC . Then, it is clear
that the product L×C defines a (k+1)-subdivision cube of 2SU

n , with maximal vertex v. Indeed,
as ρ is the maximal element corresponding to dimensions of L × C, the faces of L × C are the
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(k + 1)-dimensional rectangular prisms resulting from shifting ρ through the k-faces of C, as in
Equation (I).

Finally, L × C is maximal under inclusion. If there was a larger (k + 1)-subdivision cube
enveloping L× C, then one of its projections would be a 1 or k-subdivision cube enveloping L or
C, contradicting the assumption that they are maximal. This finishes the construction.

Definition 6.47. For a vertex v of 2SU
n , the hourglass of 2SU

n at v is the maximal pair of subdivision

cubes ▷◁

SU
v , with respect to inclusion, within the set of all pairs (C,C ′) of subdivision cubes such

that C has maximal vertex v, C ′ has minimal vertex v, and dimC + dimC ′ = n.

4|2|1|3 4|2|3|1 4|3|2|1

4|1|2|3 4|1|3|2 4|3|1|2

14|23 2|4|3|1 3|4|2|1

1|4|2|3 1|4|3|2 3|4|1|2

2|1|4|3 2|3|4|1 3|2|4|1

1|2|4|3 1|3|4|2 3|1|4|2

2|1|3|4 13|24 3|2|1|4

1|2|3|4 1|3|2|4 3|1|2|4

4|3|12

134|2

1|234

Figure 22. The hourglass ▷◁

SU
v of 2SU

3 at v = 4|3|1|2.

The following examples are pictured in Figure 22.

Example 6.48. The sets of faces {1234}, {1|234}, {1|234, 14|23}, and {1|3|24, 1|34|2} are all sub-
division cubes of 23. In contrast, the sets of faces {134|2, 14|23}, {1|234, 134|2, 14|23}, and
{1|2|34, 1|23|4} are not subdivision cubes of 2SU

3 . For v = 4|3|1|2, the only 1-subdivision
cube with minimal vertex v is 4|3|12, and the three 2-subdivision cubes with maximal ver-

tex v are {134|2}, {13|24, 134|2}, {1|234, 13|24, 14|23, 134|2}. This defines the hourglass ▷◁
SU
v =

{1|234, 13|24, 14|23, 134|2} × {4|3|12} of 2SU
3 at v.

Let us observe that the SCP corresponding to v is (σ, τ) :=(134|2,4|3|12). The ordered par-
tition σ admits three distinct rights shifts, 13|24, 14|23, 1|234, and τ admits no left shifts.

Theorem 6.49 shows that ▷◁

SU
v is generated by all shifts of the SCP corresponding to v.

Theorem 6.49. Let v be a vertex of the cubical permutahedron 2SU
n , and let (σ, τ) be its associ-

ated SCP. Then, we have

▷◁

SU
v =

⋃

M ,N

RM (σ)× LN (τ) ,

where the union is taken over all block-admissible sequences of SU shifts M ,N .

Proof. We prove the result inductively from lines, and consider the case of σ, τ proceeds similarly.
Combining Construction 6.46 with Lemma 6.35, we have that if L is a maximal 1-subdivision cube
with maximal 1-face σ, then its faces are generated by the right 1-shifts Ri

ρ, for i between 0 and
its maximal right height rρ (Definition 6.34).

Now consider the unique maximal (k+1)-subdivision cube of 2SU
n with maximal (k+1)-face σ.

By Construction 6.46, this subdivision cube is given by the product L×C of a line corresponding
to the maximal element ρ being shifted, and a k-cube C corresponding to all other elements. By
induction hypothesis, both the line L and the cube C are generated by all block-admissible right
shifts from their unique maximal faces σL and σC . Moreover, if ρ is in the ith block of σC , then
σ is obtained from σC by merging the ith and (i+ 1)st blocks.
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On the one hand, the right height of any element being shifted in C is the same as its right
height in L × C. This follows from the inductive description of 2SU

n (Equation (I)): every k-face
in C has ρ in a singleton block, and as ρ is larger than all other elements it blocks all other shifts.

On the other hand, we know from Construction 6.46 that the (k+1)-faces of L×C are obtained
by weaving ρ through the k-faces of C. Indeed, every k-face in C has ρ in a fixed singleton set, and
every k-face on the opposite side of L×C has ρ in another fixed singleton set; given Equation (I),
this final singleton block in any k-face of C is either the last block, or is followed by a block
containing an element larger than ρ. If we translate this observation back to the (k + 1)-faces of
L× C that are adjacent to the boundary of L, then this corresponds to an equivalent calculation
of the right height of ρ in σ.

Given the lattice description of the diagonal (Proposition 6.37), we thus have that L × C is
generated by all block-admissible sequences of right shifts of σ, which concludes the proof. □

This recovers the formulas [SU22, Form. (1) & (3)].

6.4.2. LA cubical description. The LA diagonal also admits a similar cubical description, which
we may quickly induce by isomorphism. We first define inductively a subdivision 2LA

n−1 of the
(n − 1)-dimensional cube which is combinatorially isomorphic to the permutahedron Perm(n),
analogous to the one from the preceding sections.

Construction 6.50. Given a (n − k)-dimensional face σ = σ1| · · · |σk of the (n − 1)-dimensional
permutahedron Perm(n), we set nj :=#σk−j+1∪· · ·∪σk, and define a subdivision Iσ := I1∪· · ·∪Ik
of the interval [0, 1] by the same formulas as in Construction 6.40.

Let 2LA
0 be the 0-dimensional cube (a point), trivially subdivided by the sole element 1 of Perm(1).

Then, assuming we have constructed the subdivision 2LA
n−1 of the (n − 1)-cube, we construct 2LA

n

as the subdivision of 2LA
n−1× [0, 1] given, for each face σ of 2LA

n−1, by the polytopal complex σ× Iσ.
We label the faces σ × I of the subdivided rectangular prism σ × Iσ by the following rule

σ × I :=





σ′
1| · · · |σ′

k|1 if I = {0},
σ′
1| · · · |σ′

j |1|σ′
j+1| · · · |σ′

k if I = Ij ∩ Ij+1 with 1 ≤ j ≤ k − 1,

1|σ′
1| · · · |σ′

k if I = {1},
σ′
1| · · · |σ′

j ∪ {1}| · · · |σ′
k if I = Ij with 1 ≤ j ≤ k,

where each block of σ has been renumbered as σ′
i := {p + 1 | p ∈ σi} for all 1 ≤ i ≤ k. We obtain

a subdivision 2LA
n of the n-cube isomorphic to the permutahedron Perm(n+ 1).

2|1 1|212 ↪→

1|3|2 1|2|3

3|1|2 2|1|3

3|2|1 2|3|1

1|23

13|2 13|2

3|12 2|13
23|1

↪→

1|3|4|2 1|3|2|4 1|2|3|4

1|4|3|2 1|4|2|3 1|2|4|3

3|1|4|2 3|1|2|4 2|1|3|4

4|1|3|2 4|1|2|3 2|1|4|3

3|4|1|2 3|2|1|4 2|3|1|4

4|3|1|2 4|2|1|3 2|4|1|3

3|4|2|1 3|2|4|1 2|3|4|1

4|3|2|1 4|2|3|1 2|4|3|1

Figure 23. Cubical realizations of the permutahedra Perm(2), Perm(3) and Perm(4) from Con-
struction 6.50.
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Figure 23 illustrates 2LA
n in dimensions 1 to 3. We have indicated in bold the embedding

2LA
n−1 ↪→ 2LA

n induced by the natural inclusions Rn ↪→ Rn+1.
The appropriate base definitions for the LA diagonal of k-subdivision cubes (Definition 6.43)

and hourglasses ▷◁v (Definition 6.47) are the same as in the SU case. The proof that ▷◁

LA
v is indeed

combinatorially isomorphic to Perm(n+ 1) proceeds similarly to Proposition 6.42.
Recall from Section 5.3 the face poset isomorphism of the permutahedra which acts onA1| · · · |Ak,

by replacing each block Aj by the block r(Aj) := {n− i+ 1 | i ∈ Aj}. We have the analogue of
Theorem 6.49 for the LA diagonal.

Theorem 6.51. Let v be a vertex of the cubical permutahedron 2n, and let (σ, τ) be its associ-
ated SCP. Then, we have

▷◁

LA
v =

⋃

M ,N

LM (σ)×RN (τ) ,

where the union is taken over all block-admissible sequences of LA shifts M ,N .

Proof. It is straightforward to see that the involution r induces a k-subdivision cube isomorphism
r : 2SU

n → 2LA
n between the cubical subdivisions of Construction 6.40 and Construction 6.50,

which sends the hourglass ▷◁

SU
v to the hourglass ▷◁

LA
r(v). By Theorem 6.49, we know that ▷◁

SU
v is

generated by SU shifts; we want to deduce that ▷◁
LA
r(v) is generated by LA shifts. First, we observe

that the diagram

SCP SCP

Sn Sn,

t(r×r)

r

where t is the permutation of the two factors, and the vertical arrows are the bijection between
SCPs and permutations (Definition 6.1), is commutative. Thus, if we start from a SCP and

consider its associated SU hourglass ▷◁

SU
v , applying the subdivision cube isomorphism r or applying

the map t(r × r) both give the LA hourglass ▷◁

LA
r(v). Combining this with the fact that the map

t(r × r) : △LA → △SU is an isomorphism between the LA and SU diagonal (Remark 5.16) which
preserves left and right shifts (Proposition 6.27), we obtain the desired result. □

4|2|1|3 4|2|3|1 4|3|2|1

4|1|2|3 4|1|3|2 4|3|1|2

14|23 2|4|3|1 3|4|2|1

1|4|2|3 1|4|3|2 3|4|1|2

2|1|4|3 2|3|4|1 3|2|4|1

1|2|4|3 1|3|4|2 3|1|4|2

2|1|3|4 13|24 3|2|1|4

1|2|3|4 1|3|2|4 3|1|2|4

4|3|12

134|2

1|234

r−→

1|3|4|2 1|3|2|4 1|2|3|4

1|4|3|2 1|4|2|3 1|2|4|3

14|23 3|1|2|4 2|1|3|4

4|1|3|2 4|1|2|3 2|1|4|3

3|4|1|2 3|2|1|4 2|3|1|4

4|3|1|2 4|2|1|3 2|4|1|3

3|4|2|1 24|13 2|3|4|1

4|3|2|1 4|2|3|1 2|4|3|1

1|2|34

124|3

4|123

Figure 24. The isomorphism r applied to the SU cubical subdivision from Figure 22.

Example 6.52. Applying the isomorphism r to Example 6.48 yields the illustration of Figure 24.
As r is an isomorphism of k-subdivision cubes, the maximal pair of SU subdivision cubes has been
mapped to a maximal pair of LA subdivision cubes. Note that the maximal SU 2-subdivision cube
with maximal vertex 4|3|1|2 was generated by SU right shifts. Its image under r is the maximal
LA 2-subdivision cube with minimal vertex 1|2|4|3, and it is generated by LA right shifts.
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6.5. Matrix description. For completeness, we recall from [SU04] the matrix description of facets of
the SU diagonal. We previously saw that SCPs and permutations are in bijection (Definition 6.1).
There is also a third equivalent way to encode this data, the step matrices of [SU04, Def. 6]. Given
a permutation, one defines its associated step matrix by starting in the bottom left corner, writing
increasing sequences vertically and decreasing sequences horizontally one after the other, leaving
all other entries 0. See Figure 25.

6|5|2|4|7|1|3

256

4

17

3

6

5

247

13

σ1 σ2 σ3 σ4





τ4 1 3
τ3 2 4 7
τ2 5
τ1 6

Figure 25. A permutation, its associated SCP, and their step matrix.

Given a matrix A whose only non-zero entries are the elements [n], let σi(A) denote the non-
zero entries of the ith column, and τj(A) the non-zero entries of the (r − j + 1)st row, where r is
the number of rows of A. See the labelling in Figure 25. With this identification, the definitions
of the shift operators can be translated directly: the right shift operator RM shifts the elements
of a subset M ⊂ σi(A) one column to the right, or one row up, replacing only elements of value 0,
and leaving 0 elements in their wake, while the left shift operator LM shifts the elements of M to
the left, or down one row.

The fact that the shifts avoid collisions with other elements is a consequence of their admissi-
bility. Recall from Definition 6.6, that a right SU 1-shift RM is block-admissible if minσi /∈ M
and minM > maxσi+1, and that admissible sequence of right shifts proceed in increasing order
(Definition 6.9).

Proposition 6.53. Admissible sequences of matrix shift operators are well-defined.

Proof. We verify the claim that the admissible sequences of matrix shift operators never replace
non-zero elements. It is straightforward to show that this is true when a shift operator is applied
to a SCP (σ, τ). From here we proceed inductively. We assume that all prior shift operators
have been well-defined, and we then check that applying another admissible shift operator is also
well-defined. Suppose that an admissible right shift RM is not well-defined, as it tries to move a
value m into a non-zero matrix entry n. Then, n must have been placed into that column by a
prior left shift operator LNj

, and consequently n > minNj > max τj−1 > m. However, n ∈ σi+1

so maxσi+1 > n > m > minMi implies that M is not block-admissible, a contradiction. □
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Figure 26. Matrix shifts under the isomorphism t(r × r) between the LA and SU diagonals.

Configuration matrices [SU04, Def. 7] are the matrices corresponding to SCPs and those gen-
erated by admissible sequences of shifts. Consequently, they are in bijection with the facets of



CELLULAR DIAGONALS OF PERMUTAHEDRA 61

the SU diagonal. The translation of these results for the LA diagonal is clear. One can use the
isomorphism t(r × r) as in the following example.

Example 6.54. The first row of Figure 26 contains a sequence of admissible SU subset shifts applied
to the matrix encoding of the SCP 256|4|17|3× 6|5|147|13. The second row is the image of these
shifts under the isomorphism t(r× r). Note that the shifts of this example are also isomorphic to
those of Example 6.30, under the isomorphism (rs× rs).
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Part III. Higher algebraic structures

In this third part, we derive some higher algebraic consequences of the results obtained in
Part II. We first prove in Section 7.1 that there are exactly two topological operad structures on
the family of operahedra (resp. multiplihedra) which are compatible with the generalized Tamari
order, and thus two geometric universal tensor products of (non-symmetric non-unital) homotopy
operads (resp. A∞-morphisms). Then, we show that these topological operad structures are iso-
morphic (Section 7.2). However, these isomorphisms do not commute with the diagonal maps
(Examples 7.14 and 7.17). Finally, we show that contrary to the case of permutahedra, the faces
of the LA and SU diagonals of the operahedra (resp. multiplihedra) are in general not in bijection
(Section 7.3). However, from a homotopical point of view, the two tensor products of homotopy
operads (resp. A∞-morphisms) that they define are ∞-isomorphic (Theorems 7.18 and 7.22).

7. Higher tensor products

7.1. Topological operadic structures. The permutahedra are part of a more general family of
polytopes called Loday realizations of the operahedra [LA22, Def. 2.9], which encodes the notion
of homotopy operad [LA22, Def. 4.11] (we consider here only non-symmetric non-unital homotopy
operads). Let PTn be the set of planar trees with n internal edges, which are labelled by [n]
using the infix order. For every planar tree t, there is a corresponding operahedron Pt whose
codimension k faces are in bijection with nestings of t with k non-trivial nests.

Definition 7.1 ([LA22, Def. 2.1 & 2.22]). A nest of t ∈ PTn is a subset of internal edges which
induce a subtree, and a nesting of t is a family of nests which are either included in one another,
or disjoint. See Figure 27.
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1 2

3

4

5

Figure 27. Two nestings of a tree with 5 internal edges. These nestings, Definition 7.1, are also
2-colored, Definition 7.6.

Since the operahedra are generalized permutahedra [LA22, Coro. 2.16], a choice of diagonal
for the permutahedra induces a choice of diagonal for every operahedron [LA22, Coro. 1.31].
Every face of an operahedron is isomorphic to a product of lower-dimensional operahedra, via an
isomorphism Θ which generalizes the one from Section 5.2, see Point (5) of [LA22, Prop. 2.3].

Definition 7.2. An operadic diagonal for the operahedra is a choice of diagonal △t for each Loday
operahedron Pt, such that△ := {△t} commutes with the map Θ, i.e. it satisfies [LA22, Prop. 4.14].

An operadic diagonal gives rise to topological operad structure on the set of Loday operahedra
[LA22, Thm 4.18], and via the functor of cellular chains, to a universal tensor product of homotopy
operads [LA22, Prop. 4.27]. Here, by universal, we mean a formula that applies uniformly to any
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pair of homotopy operads. Since such an operad structure and tensor product are induced by a
geometric diagonal, we shall call them geometric.

Theorem 7.3. There are exactly

(1) two geometric operadic diagonals of the Loday operahedra, the LA and SU diagonals,
(2) two geometric colored topological cellular operad structures on the Loday operahedra,
(3) two geometric universal tensor products of homotopy operads,

which agree with the generalized Tamari order on fully nested trees.

Proof. Let us first examine Point (1). By Theorem 5.13, we know that if one of the two choices
△LA or △SU is made on an operahedron Pt, one has to make the same choice on every lower-
dimensional operahedron appearing in the decomposition Pt1 × · · · × Ptk

∼= F ⊂ Pt of a face F
of Pt. Now suppose that one makes two distinct choices for two operahedra Pt and Pt′ . It is easy
to find a bigger tree t′′, of which both t and t′ are subtrees. Therefore, Pt and Pt′ appear as facets
of Pt′′ and by the preceding remark, any choice of diagonal for Pt′′ will then contradict our initial
two choices. Thus, these had to be the same from the start, which concludes the proof.

Point (2) then follows from the fact that a choice of diagonal for the Loday realizations of
the operahedra forces a unique topological cellular colored operad structure on them, see [LA22,
Thm. 4.18]. Since universal tensor products of homotopy operads are induced by a colored operad
structure on the operahedra [LA22, Coro. 4.24], we obtain Point (3). Finally, since only vectors
with strictly decreasing coordinates induce the generalized Tamari order on the skeleton of the
operahedra [LA22, Prop. 3.11], we get the last part of the statement. □

This answers a question raised in [LA22, Rem. 3.14].

Example 7.4. The Loday associahedra correspond to the Loday operahedra associated with linear
trees [LA22, Sect. 2.2], and define a suboperad. The restriction of the two operad structures of
Theorem 7.3 coincide in this case, and both the LA and SU diagonals induce the magical formula
of [MS06, MTTV21, SU22] defining a universal tensor product of A∞-algebras.

Example 7.5. The restriction of Theorem 7.3 to the permutahedra associated with 2-leveled trees
gives two distinct universal tensor products of permutadic A∞-algebras, as studied in [LR13,
Mar20].

Two other important families of operadic polytopes are the Loday associahedra and Forcey
multiplihedra, which encode respectively A∞-algebras and A∞-morphisms [LAM23, Prop. 4.9], as
well as A∞-categories and A∞-functors [LAM23, Sect. 4.3]. For every linear tree t ∈ PTn, there
is a corresponding Loday associahedron Kn, whose faces are in bijection with nestings of t, and a
Forcey multiplihedron Jn whose faces are in bijection with 2-colored nestings of t.

Definition 7.6 ([LAM23, Def. 3.2]). A 2-colored nesting is a nesting where each nest N is either
blue, red, or blue and red (purple), and which satisfies that if N is blue or purple (resp. red
or purple), then all nests contained in N are blue (resp. all nests that contain N are red). See
Figure 27.

The Loday associahedra are faces of the Forcey multiplihedra: they correspond to 2-colored
nestings where all the nests are of the same color (either blue or red).

Forcey realizations of the multiplihedra are not generalized permutahedra, but they are projec-
tions of the Ardila–Doker realizations, which are [LAM23, Prop. 1.16]. A choice of diagonal for
the permutahedra thus induces a choice of diagonal for every Ardila–Doker multiplihedron, and a
subset of these choices (the ones which satisfy [LAM23, Prop. 2.7 & 2.8]) further induce a choice
of diagonal for the Forcey multiplihedra. Every face of a Forcey multiplihedron is isomorphic to a
product of a Loday associahedron and possibly many lower-dimensional Forcey multiplihedra, via
an isomorphism Θ similar to the one from Section 5.2, see Point (4) of [LAM23, Prop. 1.10].

Definition 7.7. An operadic diagonal for the multiplihedra is a choice of diagonal △n for each
multiplihedron Jn, such that △ := {△n} commutes with the map Θ.
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An operadic diagonal endows the Loday associahedra with a topological operad structure
[MTTV21, Thm. 1], and the Forcey multiplihedra with a topological operadic bimodule struc-
ture over the operad of Loday associahedra [LAM23, Thm. 1]. Via the functor of cellular chains,
it defines universal tensor products of A∞-algebras and A∞-morphisms [LAM23, Sec. 4.2.1]. Here
again, by universal we mean a formula that applies uniformly to any pair of A∞-algebras or
A∞-morphisms. We shall call such geometrically defined operadic structures and tensor products
geometric.

Theorem 7.8. There are exactly

(1) two geometric operadic diagonals of the Forcey multiplihedra, the LA and SU diagonals,
(2) two geometric topological cellular operadic bimodule structures (over the Loday associahe-

dra) on the Forcey multiplihedra,
(3) two compatible geometric universal tensor products of A∞-algebras and A∞-morphisms,

which agree with the Tamari-type order on atomic 2-colored nested linear trees.

Proof. Let us first examine Point (1). Consider the vectors vLA :=(1, 2−1, 2−2, . . . , 2−n+1) and
vSU :=(2n − 1, 2n − 2, 2n − 22, . . . , 2n − 2n−1) in Rn. As previously observed, they induce the LA
and SU diagonals on the permutahedra (Definition 5.3). One checks directly that both vectors
satisfy [LAM23, Prop. 2.7 & 2.8], and thus define diagonals of the Forcey multiplihedron Jn which
agree with the Tamari-type order [LAM23, Prop. 2.10]. Moreover, these diagonals commute with
the map Θ for the Forcey multiplihedra [LAM23, Prop. 2.14]; this is because after deleting the
last coordinate of vLA or vSU, and then applying Θ−1, we still have vectors which induce the LA
or SU diagonal, respectively.

By Theorem 5.13, we know that if one of the two choices △LA or △SU is made on a mul-
tiplihedron Jn, one has to make the same choice on every lower-dimensional multiplihedra and
associahedra appearing in the product decomposition of any face of Jn. Now suppose that one
makes two distinct choices for two multiplihedra Jn and Jn′ . It is easy to find a bigger multipli-
hedron Jn′′ , for which Jn and Jn′ appear in the product decomposition of a face of Jn′′ and by
the preceding remark, any choice of diagonal for Jn′′ will then contradict our initial two choices.
Thus, these had to be the same from the start, which conclude the proof of Point (1).

Point (2) then follows from the fact that a choice of diagonal for the Loday associahedra and the
Forcey multiplihedra forces a unique topological cellular colored operad and operadic bimodule
structure on them, see [MTTV21, Thm. 1] and [LAM23, Thm. 1]. Since a universal tensor prod-
ucts of A∞-algebras, and a compatible universal tensor products of A∞-morphisms are induced
by an operad and operadic bimodule structures on the associahedra and multiplihedra respec-
tively [LAM23, Sec. 4.2.3], we obtain Point (3). Finally, since only vectors with strictly decreasing
coordinates induce the Tamari-type order on the skeleton of the Loday multiplihedra [LAM23,
Prop. 2.10], we get the last part of the statement. □

This answers a question raised in [LAM23, Rem. 3.9].

Remark 7.9. Note that in the case of the Loday associahedra, there is only one geometric operadic
diagonal which induces the Tamari order atomic 2-colored nested planar trees (equivalently, binary
trees, see [LAM23, Fig. 6]). Therefore, there is only one geometric topological operad structure,
and only one geometric universal tensor product. This is because any vector with strictly de-
creasing coordinates lives in the same chamber of the fundamental hyperplane arrangement of the
Loday associahedra (see [LA22, Ex. 1.21]).

Remark 7.10. Considering all 2-colored nested trees instead of only linear trees, one should obtain
similar results for tensor products of ∞-morphisms of homotopy operads.

We shall see now that the two operad (resp. operadic bimodule) structures on the operahedra
(resp. multiplihedra) are related to one another in the strongest possible sense: they are isomorphic
as topological cellular colored operads (resp. topological operadic bimodule structure over the
associahedra).
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7.2. Relating operadic structures. Recall that the topological cellular operad structure on the
operahedra [LA22, Def. 4.17] is given by a family of partial composition maps

◦LAi : Pt′ × Pt′′ P(t′,ω) × Pt′′ Pt.
tr×id Θ

Here, the map tr is the unique topological cellular map which commutes with the diagonal △LA,
see [MTTV21, Prop. 7]. This partial composition ◦LAi is an isomorphism in the category Poly [LA22,
Def. 4.13] between the product Pt′ × Pt′′ and the facet t′ ◦i t′′ of Pt. At the level of trees, the
composition operation ◦i is given by substitution [LA22, Fig. 14]. Using the SU diagonal △SU,
one can define similarly a topological operad structure via the same formula, but with a different
transition map tr, which commutes with △SU.

Recall that a face F of Pt is represented by a nested tree (t,N ), which can be written uniquely
as a sequence of substitution of trivially nested trees (t,N ) = ((· · · ((t1 ◦i1 t2) ◦i2 t3) · · · ) ◦ik tk+1).
Here we use the increasing order on nestings [LA22, Def. 4.5], and observe that any choice of
sequence of ◦i operations yield the same nested tree, since these form an operad [LA22, Def. 4.7].
At the geometric level, we have an isomorphism

((· · · ((◦LAi1 )◦LAi2 ) · · · )◦LAik ) : Pt1 × Pt2 × · · · × Ptk+1

∼=−→ F ⊂ Pt

between a uniquely determined product of lower dimensional operahedra, and the face F = (t,N )
of Pt. Note that any choice of sequence of ◦LAi operations yield the same isomorphism, since they
form an operad [LA22, Thm. 4.18]. The same holds when taking the ◦SUi operations instead of
the ◦LAi .

Construction 7.11. For any operahedron Pt, we define a map Ψt : Pt → Pt

• on the interior of the top face by the identity id : P̊t → P̊t, and
• on the interior of the face F = ((· · · ((t1 ◦i1 t2)◦i2 t3) · · · )◦ik tk+1) of Pt by the composition

of the two isomorphisms

((· · · ((◦SUi1 )◦SUi2 ) · · · )◦SUik ) ((· · · ((◦LAi1 )◦LAi2 ) · · · )◦LAik )−1 : F → F.

Theorem 7.12. The map Ψ := {Ψt} is an isomorphism of topological cellular symmetric colored
operad between the LA and SU operad structures on the operahedra, in the category Poly.

Proof. By definition, we have that Ψ is an isomorphism in the category Poly. It remains to show
that it preserves the operad structures, i.e. that the following diagram commutes

Pt′ × Pt′′ Pt

Pt′ × Pt′′ Pt

◦LA
i

Ψt′×Ψt′′ Ψt

◦SU
i

For two interior points (x, y) ∈ P̊t′ × P̊t′′ , the diagram clearly commutes by definition, since Ψt′

and Ψt′′ are the identity in that case. If x is in a face F = ((· · · ((t1 ◦i1 t2)◦i2 t3) · · · )◦ik tk+1) of the
boundary of Pt′ , then the lower composite is equal to ◦SUi (◦SUi1 ◦SUi2 · · ·◦SUik ×id)(◦LAi1 ◦LAi2 · · ·◦LAik ×id)−1,

and so is the upper composite since Ψt starts with the inverse (◦LAi )−1 and the decomposition of F
into Pt1×· · ·×Ptk+1

×Pt′′ is unique. The case when y is in the boundary of Pt′′ is similar. Finally,
the compatibility of Ψ with units and the symmetric group actions are straightforward to check,
see [LA22, Def. 4.17 & Thm. 4.18]. □
Remark 7.13. Construction 7.11 and Theorem 7.12 do not depend on a specific choice of operadic
diagonal. In this case, however, we do not lose any generality by using specifically the LA and SU
operad structures.

Example 7.14. Note that Ψ is not a morphism of “Hopf” operads, i.e. it does not commute with
the respective diagonals △LA and △SU. Consider the two square faces F :=12|34 and G :=24|13
of the 3-dimensional permutahedron Perm(4), and choose a point z ∈ (F̊ + G̊)/2. Then, △LA(z)
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and △SU(z) are two different pair of points on the 1-skeleton of Perm(4). Since ◦LAi and ◦SUi
are the identity both on the interior of Perm(4) (by Construction 7.11) and on the 1-skeleton of
Perm(4) (see the proof of [MTTV21, Prop. 7]), we directly obtain that

△LA(z) = (Ψ×Ψ)△LA(z) ̸= △SUΨ(z) = △SU(z).

Recall that the topological cellular operadic bimodule structure on the Forcey multiplihedra is
given by a family of action-composition maps [LAM23, Def. 2.13]

◦LAp+1 : Jp+1+r ×Kq J(1,...,q,...,1) ×Kq Jn and
tr×id Θp,q,r

γLA
i1,...,ik

: Kk × Ji1 × · · · × Jik K(i1,...,ik) × Ji1 × · · · × Jik Ji1+···+ik .
tr×id Θi1,...,ik

Here, the map tr is the unique topological cellular map which commutes with the diagonal △LA,
see [MTTV21, Prop. 7]. These action-composition maps ◦LAp+1 and γLA

i1,...,ik
are isomorphisms in the

category Poly [LAM23, Sec. 2.1] between the products Jp+1+r ×Kq and Kk × Ji1 × · · · × Jik , and
corresponding facets of Jn and Ji1+···+ik , respectively. Using the SU diagonal △SU, one defines
similarly a topological operadic bimodule structure via the same formula, but with a different
transition map tr, which commutes with △SU.

There is a bijection between 2-colored planar trees and 2-colored nested linear trees [LAM23,
Lem. 3.4 & Fig. 6], which translate grafting of planar trees into substitution at a vertex of nested
linear trees. The indices of the ◦p+1 and γi1,...,ik operations above refer to grafting. Equivalently,
a face of Jn is represented by a 2-colored nested tree (t,N ), which can be written uniquely as a
sequence of substitution of trivially nested 2-colored trees (t,N ) = ((· · · ((t1 ◦i1 t2) ◦i2 t3) · · · ) ◦ik
tk+1). Here we use the left-levelwise order on nestings [LAM23, Def. 4.12], and translate tree
grafting operations ◦p+1 and γi1,...,ik into nested tree substitution ◦ij . Note that any choice of
substitutions yield the same 2-colored nested tree, since these form an operadic bimodule.

At the geometric level, we have an isomorphism ((· · · ((◦LAi1 )◦LAi2 ) · · · )◦LAik ) between a uniquely
determined product of lower dimensional associahedra and multiplihedra, and the face (t,N ).
Note that any choice of ◦LAi operations (i.e. the ◦LAp+1 and γLA

i1,...,ik
action-composition operations)

yield the same isomorphism, since they form an operadic bimodule [LAM23, Thm. 1]. The same
holds when taking the ◦SUi (i.e. the ◦SUp+1 and γSU

i1,...,ik
action-composition) operations instead.

Construction 7.15. For any Forcey multiplihedron Jn, we define a map Ψn : Jn → Jn

• on the interior of the top face by the identity id : J̊n → J̊n, and
• on the interior of the face F = ((· · · ((t1 ◦i1 t2)◦i2 t3) · · · )◦ik tk+1) of Jn by the composition

of the two isomorphisms

((· · · ((◦SUi1 )◦SUi2 ) · · · )◦SUik ) ((· · · ((◦LAi1 )◦LAi2 ) · · · )◦LAik )−1 : F → F.

Theorem 7.16. The map Ψ := {Ψn} is an isomorphism of topological cellular operadic bimodule
structure over the Loday associahedra between the LA and SU operadic bimodule structures on the
Forcey multiplihedra, in the category Poly.

Proof. The proof is the same as the one of Theorem 7.12, with the multiplihedra ◦LAi and ◦SUi
operations (that is, the action-composition maps ◦LAp+1 and γLA

i1,...,ik
, and ◦SUp+1 and γSU

i1,...,ik
) in place

of the operahedra operations. □

Example 7.17. Note that Ψ does not commute with the respective diagonals △LA and △SU.
Consider the two square faces F := [ ( • • • ) • ] and G := ( • [ • • ] • ) of the 3-dimensional Forcey

multiplihedron J4, and choose a point z ∈ (F̊ + G̊)/2. Then, △LA(z) and △SU(z) are two different
pair of points on the 1-skeleton of J4 (see [LAM23, Ex. 3.7 & Fig. 9]). Since the LA and SU
action-composition maps are the identity both on the interior of J4 (by Construction 7.15) and on
the 1-skeleton of J4 (see the proof of [MTTV21, Prop. 7]), we directly obtain that

△LA(z) = (Ψ×Ψ)△LA(z) ̸= △SUΨ(z) = △SU(z).
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7.3. Tensor products. Recall that a homotopy operad P is a family of vector spaces {P(n)}n≥1

together with a family of operations {µt} indexed by planar trees t [LA22, Def. 4.11]. One
can consider the category of homotopy operads with strict morphisms, that is morphisms of the
underlying vector spaces which commute strictly with all the higher operations µt, or with their
∞-morphisms, made of a tower of homotopies controlling the lack of commutativity of their first
component with the higher operations [LV12, Sec. 10.5.2].

Theorem 7.18. For any pair of homotopy operads, the two universal tensor products defined by the
LA and SU diagonals are not isomorphic in the category of homotopy operads and strict morphisms.
However, they are isomorphic in the category of homotopy operads and their ∞-morphisms.

Proof. Since the two morphisms of topological operads△LA and△SU do not have the same cellular
image, the tensor products that they define are not strictly isomorphic. However, they are both
homotopic to the usual thin diagonal. Recall that homotopy operads are algebras over the colored
operad O∞, which is the minimal model of the operad O encoding (non-symmetric non-unital)
operads [LA22, Prop. 4.9]. Using the universal property of the minimal model O∞, one can show
that the algebraic diagonals △LA,△SU : O∞ → O∞⊗O∞ are homotopic, in the sense of [MSS02,
Sec. 3.10], see [MSS02, Prop. 3.136]. Then, by [DSV16, Cor. 2] there is an ∞-isotopy, that
is an ∞-isomorphism whose first component is the identity, between the two homotopy operad
structures on the tensor product. □

Remark 7.19. Neither of the two diagonals △LA or △SU are cocommutative, or coassociative, as
they are special cases of A∞-algebras [MS06, Thm. 13].

Note that restricting to linear trees, the two tensor products of A∞-algebras induced by the
LA and SU diagonals coincide (and are thus strictly isomorphic). Restricting to 2-leveled trees,
we obtain two tensor product of permutadic A∞-algebras whose terms are in bijection. For the
operahedra in general, such a bijection does not exist, as the following example demonstrates.

Example 7.20. The LA and SU diagonals of the operahedra associated with trees that have less
than 4 internal edges have the same number of facets. However, there are 24 planar trees with 5
internal edges, such that the number of facets of the LA and SU diagonals are distinct, displayed
in Figure 28. To compute these numbers, we first computed the facets of the LA and SU diagonals
of the permutahedra, and then used the projection from the permutahedra to the operahedra
described in [LA22, Prop. 3.20].

Remark 7.21. The lack of symmetry in the trees in Figure 28 arises from the lack of symmetry
inherent in the infix order, and in how the LA and SU diagonal treat maximal and minimal
elements. A sufficient condition for the diagonals of a tree t to have the same number of facets is
to satisfy, N is a nesting of t if and only if rN is a nesting of t. For a tree satisfying this condition,
relabelling its edges via the function r : [n]→ [n] defined by r(i) :=n− i+1 exchanges the number
of facets between the LA and SU diagonals.

We have an analogous result for universal tensor products of A∞-morphisms. Let A2
∞ denote

the 2-colored operad whose algebras are pairs of A∞-algebras together with an A∞-morphism
between them [LAM23, Sec. 4.4.1]. The datum of a diagonal of the operad A∞ encoding A∞-
algebras and a diagonal of the operadic bimodule M∞ encoding A∞-morphisms is equivalent to
the datum of a morphism of 2-colored operads A2

∞ → A2
∞ ⊗A2

∞.

Theorem 7.22. For any pair of A∞-morphisms, the two universal tensor products defined by the
LA and SU diagonals are not isomorphic in the category of A2

∞-algebras and strict morphisms.
However, they are isomorphic in the category of A2

∞-algebras and their ∞-morphisms.

Proof. Since the two morphisms of topological operadic bimodules on the multiplihedra △LA and
△SU do not have the same cellular image, the tensor products that they define are not strictly
isomorphic. However, they are both homotopic to the usual thin diagonal. Recall that the operad
A2

∞ is the minimal model of the operad As2, whose algebras are pairs of associative algebras
together with a morphism between them [LA22, Prop. 4.9]. Using the universal property of the



68 B. DELCROIX-OGER, G. LAPLANTE-ANFOSSI, V. PILAUD, AND K. STOECKL

minimal model A2
∞, one can show that the algebraic diagonals △LA,△SU : A2

∞ → A2
∞ ⊗ A2

∞ are
homotopic, in the sense of [MSS02, Sec. 3.10]. Then, by [DSV16, Cor. 2] there is an ∞-isotopy,
that is an ∞-isomorphism whose first component is the identity, between the two tensor products
of A∞-morphisms. □
Remark 7.23. As studied in [LAM23, Sec. 4.4], the above tensor products of A∞-morphisms are
not coassociative, nor cocommutative. Moreover, there does not exist a universal tensor product
of A∞-morphisms which is compatible with composition [LAM23, Prop. 4.23].

Example 7.24. The LA and SU diagonals of the multiplihedra associated with trees that have less
than 4 edges have the same number of facets. However, for linear trees with 5 and 6 internal edges,
the number of facets of the LA and SU diagonals differ, as displayed in Table 8. To compute these
numbers, we first computed the facets of the LA and SU diagonals of the permutahedra, and then
used the projection from the permutahedra to the multiplihedra described in the proof of [Dok11,
Thm. 3.3.6].

(266, 263) (256, 254) (255, 254) (263, 266) (214, 216) (162, 161)

(212, 213) (129, 127) (160, 161) (142, 141) (141, 144) (91, 92)

(155, 152) (98, 97) (266, 263) (157, 154) (256, 255) (255, 254)

(263, 266) (212, 213) (129, 127) (160, 161) (266, 263) (154, 157)

Figure 28. The 24 planar trees t with 5 internal edges for which the number of facets in the LA
diagonal (left) and the SU diagonal (right) differ.
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Internal edges LA diagonal LA only Shared SU only SU diagonal
n = 1 2 0 2 0 2
n = 2 8 0 8 0 8
n = 3 42 5 37 5 42
n = 4 254 72 182 72 254
n = 5 1678 759 919 757 1676
n = 6 11790 7076 4714 7024 11738

Table 8. Number of facets in the LA and SU diagonals of the multiplihedra, indexed by linear
trees with n internal edges.
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[Hof10] Eric Hoffbeck. A poincaré–birkhoff–witt criterion for koszul operads. manuscripta mathemat-

ica, 131(1):87–110, 2010. arXiv:0709.2286.
[KW23] Ralph Kaufmann and Benjamin Ward. Koszul Feynman categories. Proc. Amer. Math. Soc.,

151(8):3253–3267, 2023. arXiv:2108.09251.
[LA22] Guillaume Laplante-Anfossi. The diagonal of the operahedra. Adv. Math., 405:Paper No.

108494, 50, 2022. arXiv:2110.14062.
[LAM23] Guillaume Laplante-Anfossi and Thibaut Mazuir. The diagonal of the multiplihedra and the
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