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Props

Let C be a set of colours, and denote a sequence of colours c = (c1, ..., cn)

Definition

A C-coloured prop P is a strict symmetric monoidal category whose
objects are generated by the free monoid F (C).

Let P
(d
c

)
:= HomP(c1 ⊗ ...⊗ cn, d1 ⊗ ...⊗ dm), then

P is a (symmetric) bimodule, i.e. if α ∈ P
(d
c

)
then α ·

(
σ
τ

)
∈ P

(
σd
cτ

)
.

P has a vertical composition P
(c
b

)
⊗ P

(b
a

) ◦V−→ P
(c
a

)
.

P has a horizontal composition P
(d
c

)
⊗ P

(b
a

) ◦h−→ P
(d ,b
c,a

)
.

Denote ◦V (f , g) with
f

g
and, ◦h(f , g) with f g
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The Relations of a Prop

◦V (◦V (f , g), h) = ◦V (f , ◦V (g , h))

f

g

h

◦h(◦h(f , g), h) = ◦h(f , ◦h(g , h)) f g h

◦h(◦V (f , g), ◦V (h, i)) = ◦V (◦h(f , h), ◦h(g , i))
f

g

h

i

Idea: An ∞-prop, is a prop where,

1 these relations no longer hold strictly∗, but only up to homotopy, and

2 we can construct an infinity tower of homotopies between homotopies.

*:Props also have unit and biequivariance relations which we are not relaxing today.
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Oriented Cobordisms

Theorem (Godin, Santander)

Normalised fat admissible graphs provides a model for the classifying
spaces of mapping class groups of oriented cobordisms.

Theorem (Santander)

They also provide a model for the composition of oriented cobordisms.

◦V ( , ◦h( , )) =

Is this composition governed by a prop?



Path Spaces

If X is a topological space, then in P(X ) := HomTop([0, 1],X ) one can
compose paths with the same target and source,

◦V (f , g) :=

{
g(2t), 0 ≤ t ≤ 1/2

f (2t − 1), 1/2 ≤ t ≤ 1

However, as this composition involves scaling it is not strictly associative...

◦V (◦V (f , g), h) =

1/4

1/4

1/2

∼=

1/2

1/4

1/4

= ◦V (f , ◦V (g , h))
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Cobordisms Have ∞-Category Homotopies

The composition of fat graphs also involves normalisation, thus informally∗

◦V (◦V ( , ), ) =

1/4

1/4

1/2

∼=

1/2

1/4

1/4

= ◦V ( , ◦V (( , )

∗ : We are illustrating the scalings on the cobordisms, not actual fat graphs.

The true compositions + scalings of fat graphs are much more complicated!



Cobordisms Should Have ∞-Operad Homotopies,

and ...

◦2(◦1( , ) ) =

1/4

1/4
1/2

◦1(◦2( , ), ) =

1/4

1/2
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Are These Homotopies Governed by an ∞-Prop?

◦2(◦1( , ) ) =

1/4

1/4
1/2

◦1(◦2( , ), ) =

1/4

1/2
1/4

◦V ( , ◦h( , )) =

1/2

1/4
1/4



But what is an ∞-prop?



A Simplicial Reminiscence

Definition

The simplicial category △ has

as objects, the totally ordered sets [n] := {0 < 1 < ... < n}, and
as morphisms, the order preserving functions between them.

Theorem

Every morphism f : [n] → [k] in △ admits a unique factorisation up to
unique isomorphism,

[n]

[n′] [k ′]

[k]
σ

f

δ

h

σ is a composite of codegeneracy maps.

δ is a composite of inner coface maps.

h is a composite of outer coface maps.

0 0 0 0

1 1 1 1

2 2 2

3
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Simplicial Sets

Definition

A simplicial set is a functor X : △op → Set.

Example

Let C be a small category, then the nerve NC is the simplicial set with

(NC)([0]) = the objects of C.
(NC)([1]) = the morphisms of C.
(NC)([n]) = the strings of n-composable morphisms of C.

The simplices are related by,

degeneracy maps, si (
f1−→ ...

fn−→) =
f1−→ ...

fi−→ id−→ fi+1−−→ ...
fn−→)

inner face maps, di (
f1−→ ...

fn−→) =
f1−→ ...

fi−1−−→ fi+1fi−−−→ fi+2−−→ ...
fn−→)

outer face maps, d0(
f1−→ ...

fn−→) =
f2−→ ...

fn−→ and dn(
f1−→ ...

fn−→) =
f1−→ ...

fn−1−−→.
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Relation to Categories

Definition (The Nerve)

The functor N : Cat → Set△
op

is defined to send each C ∈ Cat, to

(NC)([n]) := Cat([n], C)

for all [n] ∈ △.

Theorem

The nerve functor N : Cat → Set△
op

is fully faithful.

Moreover, for every
simplex X ∈ Set△

op
, the following statements are equivalent.

There exists a small category C and an isomorphism X ∼= NC.
X satisfies the strict Segal condition.

X satisfies the strict inner Kan condition.

In other words, we have equivalences of categories,

Cat ∼= Set△
op

Segal
∼= Set△

op

Kan
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What Are These Conditions Saying?

Definition

A simplicial set X is said to satisfy the Segal condition if we have a weak
homotopy equivalence,

X ([n]) ∼= X ([1])×X ([0]) ...×X ([0]) X ([1])

If this is an isomorphism, we say X satisfies the strict Segal condition.

∼= × ×



What Are These Conditions Saying?

Definition

Let △[n] denote the representable presheaf at [n], i.e.

△[n] := Hom△(−, [n])

Let δ : [n − 1] → [n] be a inner coface map, then Λδ[n] ⊂ △[n] is called
the inner horn of δ, and consists of all coface maps into [n] except δ.

Definition

A simplicial set X is said to be an ∞-category if

Λδ[n] X

△[n]

admits a filler. It is said to be strict inner Kan if the filler is unique.



What Are These Conditions Saying?

There are only two inner coface maps targeting [3],

0 0 0

1 1 1

2 2 2

3

Filling in these two inner horns lets us construct the homotopy

◦V (◦V ( , ), ) =

1/4

1/4

1/2

∼=

1/2

1/4

1/4

= ◦V ( , ◦V (( , )



Do These Approaches Differ?

Theorem (Joyal and Tierney)

There exist two Quillen equivalent models for ∞-categories,

1 The Rezk model on complete Segal spaces sSet△
op

2 The Joyal model on simplicial sets Set△
op

There are many others!



Do These Approaches Differ?

Theorem (Joyal and Tierney)

There exist two Quillen equivalent models for ∞-categories,

1 The Rezk model on complete Segal spaces sSet△
op

2 The Joyal model on simplicial sets Set△
op

There are many others!



∞-Props

We identify an analogue of the simpicial category for props, denoted Γ.

Theorem (Hackney, Robertson, S.)

There exists a fully faithful nerve functor N : Prop → SetΓ
op

from the
category of props to the category of graphical sets. Moreover, for every
graphex X ∈ SetΓ

op
, the following statements are equivalent.

There exists a prop P and an isomorphism X ∼= NP.

X satisfies the strict Segal condition.

X satisfies the strict inner Kan condition.

Theorem (Hackney, Robertson, S.)

There exist two models for ∞-Props,

1 An analogue of the Rezk model, on complete graphical spaces sSetΓ
op

2 An analogue of the Joyal model, on graphical sets SetΓ
op

We are currently working to show they are Quillen equivalent.
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An Analogue of the Simplicial Category

Definition (Kock)

A directed graph G is a diagram of finite sets,

Edges Inputs Vertices Outputs Edges

Definition

Let Sb(G ) denote the set of subgraphs of G . Where a subgraph is a subset
of 2E×V which is convex closed and each vertex has all inputs+outputs.

G =

x

y

a

b
c

d

, Sb(G ) =

G

Cx ↑c Cy

↑b↑c ↑c↑d Cy

↑a ↑b ↑c ↑d

∅
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An Analogue of the Simplicial Category

Definition

The graphical category Γ has as objects the directed acyclic graphs. If G
and K are graphs, a morphism f : G → K is

a morphisms of free props f : F (G ) → F (K ),

such that if H ∈ Sb(G ) then f (H) ∈ Sb(K ).

Theorem (Hackney, Robertson, S.)

Every morphism f : G → K in Γ admits a unique factorisation up to
unique isomorphism,

G

G1 G3

K
σ

f

δ

h

σ is a composite of codegeneracy maps.

δ is a composite of inner coface maps.

h is a composite of outer coface maps.
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Example Morphisms

The codegeneracy maps peel off edges, or toss away nullary vertices, e.g.

x

y

z

peel−−→

x

y

z

toss−−→

x

z



Example Morphisms

The outer coface maps correspond to subgraph inclusions G ↪→ K ,
where K has one additional vertex, e.g.

x y ↪→ x y

z

↪→ x y

z

w



Example Morphisms

The inner coface maps, tear apart vertices, either producing internal
edges, or empty space, e.g.

w

z →

x

y z

w

y →

x

y z

x

w →

x

y z



Filling in the Horns Yields the Homotopies

◦2(◦1( , ) ) =

1/4

1/4
1/2

◦1(◦2( , ), ) =

1/4

1/2
1/4

◦V ( , ◦h( , )) =

1/2

1/4
1/4



Are the normalised fat graphs of Santander an ∞-Prop?

Two weeks ago with Luci Bonatto:

All homotopies of the prior slide hold strictly in normalised fat graphs.

More generally, we expect.

Conjecture

The normalised fat graphs of Santander are a type of ∞-prop. In
particular, it is the envelope of an ∞-properad.

Much of the ∞-properadic/operadic structure is actually strict as well!
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