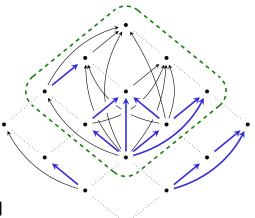
Maximal Compatibility of G-Transfer Systems



David DeMark, Mike Hill, Yigal Kamel, Nelson Niu, **Kurt Stoeckl**, Danika Van Niel and Guoqi Yan

Some Motivation

Definition

A commutative monoid is a set R, with a map $\mu: R \times R \to R$ which is

- commutative: $\mu(x,y) = \mu(y,x)$, and
- associative: $\mu(\mu(x,y),z) = \mu(x,\mu(y,z))$.

Unfortunately topologists like sets with topology, such as

- Topological spaces, and
- Topological G-spaces.

Asking for strict commutativity and associativity is too much...

Some Motivation

Definition

A commutative monoid is a set R, with a map $\mu: R \times R \to R$ which is

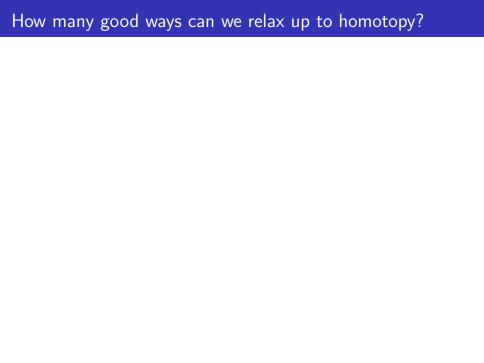
- commutative: $\mu(x,y) = \mu(y,x)$, and
- associative: $\mu(\mu(x,y),z) = \mu(x,\mu(y,z))$.

Unfortunately topologists like sets with topology, such as

- Topological spaces, and
- Topological G-spaces.

Asking for strict commutativity and associativity is too much...

...so we relax both conditions up to homotopy...



It depends on the set, but up to equivalence/homotopy,

It depends on the set, but up to equivalence/homotopy,

- Topological spaces (and spectra) have one good way.
 - There is one good notion of an E_{∞} -operad.

It depends on the set, but up to equivalence/homotopy,

- Topological spaces (and spectra) have one good way.
 - There is one good notion of an E_{∞} -operad.
- Topological G-spaces (and G-spectra) have many!
 - For every non-trivial G, there are many distinct G- N_{∞} -operads.

It depends on the set, but up to equivalence/homotopy,

- Topological spaces (and spectra) have one good way.
 - There is one good notion of an E_{∞} -operad.
- Topological G-spaces (and G-spectra) have many!
 - ullet For every non-trivial G, there are many distinct G- N_{∞} -operads.

Theorem ([BH15, GW18, BP21, Rub21a, BMO24])

There is an equivalence of categories $Ho(G-N_{\infty}-Operads) \cong Tr(G)$.

Nasty homotopy commutative monoids in G-spaces

Nice combinatorics of **G-transfer systems**

Definition

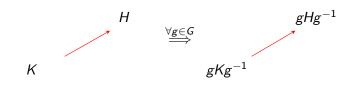
- conjugation,
- restriction, and
- composition.

Definition

- conjugation,
- restriction, and
- composition.

Definition

- conjugation,
- restriction, and
- composition.



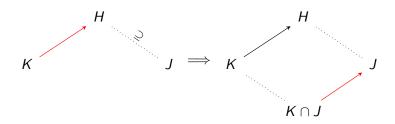
Definition

- conjugation,
- restriction, and
- composition.



Definition

- conjugation,
- restriction, and
- composition.



Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subseteq . Then, \mathcal{O} is said to be a G-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

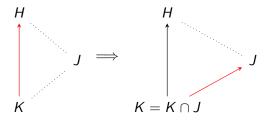
Special case: $K \subseteq J$

Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subseteq . Then, \mathcal{O} is said to be a G-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

Special case: $K \subseteq J$

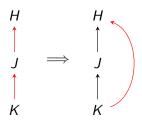


Definition

- conjugation,
- restriction, and
- composition.

Definition

- conjugation,
- restriction, and
- composition.



Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subseteq . Then, \mathcal{O} is said to be a G-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

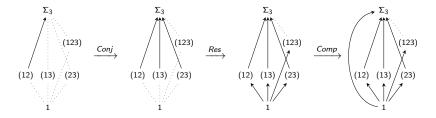
Theorem (A.2 of [Rub21a])

Let R be a binary relation on Sub(G) refining \subseteq . Let T(R) denote the closure of R under

- conjugation, then
 - restriction, and then
 - composition.

Then T(R) is the smallest G-transfer system containing R.

Example



Theorem (A.2 of [Rub21a])

Let R be a binary relation on Sub(G) refining \subseteq . Let T(R) denote the closure of R under

- conjugation, then
- restriction, and then
- composition.

Then T(R) is the smallest G-transfer system containing R.

Compatible Transfer Systems

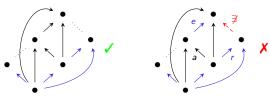
Definition ([Cha24, Definition 4.6])

Let \mathcal{O} and \mathcal{O}_m be a pair of G-transfer systems such that $\mathcal{O}_m \subseteq \mathcal{O}$. We say $(\mathcal{O}, \mathcal{O}_m)$ are **compatible** if we can complete all squares of the form

$$K = H$$
 $A = A$
 A

i.e. if $e \in \mathcal{O}_m, r \in \mathcal{O}_m$ and $a \in \mathcal{O}$ then we must have $a' \in \mathcal{O}$.

A C_{p^2q} example (left), and counter example (right).

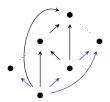


Maximal Compatible Transfer Systems

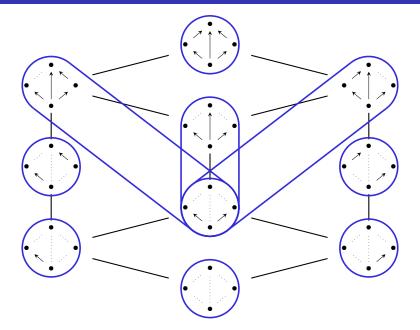
Proposition ([BH22])

For a fixed transfer system O,

- ullet there exists a maximal compatible transfer system $\mathcal{M}(\mathcal{O})$, and
- $(\mathcal{O}, \mathcal{O}_m)$ are compatible, if, and only if, $\mathcal{O}_m \subseteq \mathcal{M}(\mathcal{O})$.



Maximal Compatible Pairs of C_{pq} -Transfer Systems



But Why Care About Maximal Compatibility?

Theorem ([BH15, GW18, BP21, Rub21a, BMO24])

There is an equivalence of categories $Ho(G-N_{\infty}-Operads) \cong Tr(G)$.

Compatible additive and multiplicative ring structures in G-spaces

 \cong

Compatible transfer systems

But Why Care About Maximal Compatibility?

Theorem ([BH15, GW18, BP21, Rub21a, BMO24])

There is an equivalence of categories $Ho(G-N_{\infty}-Operads) \cong Tr(G)$.

Compatible additive and multiplicative ring structures in G-spaces

 \cong

Compatible transfer systems

Determine all multiplicative ring structures that distribute over an addition

Compute the maximal compatible transfer system

Computing $\mathcal{M}(\mathcal{O})$

What if we just delete everything that produces a compatibility failure?

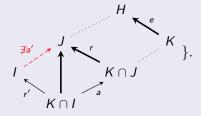
Computing $\mathcal{M}(\mathcal{O})$ via its Complement

What if we just delete everything that produces a compatibility failure?

Proposition (DHKNSVNY)

The complement $\mathcal{M}(\mathcal{O})^c := \mathcal{O} \setminus \mathcal{M}(\mathcal{O})$ of the maximal compatible transfer system of \mathcal{O} satisfies,

$$\mathcal{M}(\mathcal{O})^c = \{e \in \mathcal{O} : \exists r, r' \in Res(e), a \in \mathcal{O}, \not\exists a' \in \mathcal{O} \text{ such that }$$



Whenever this diagram occurs we delete every bold arrow.

Case: $\mathcal{M}(\mathcal{O})^c = \emptyset$, i.e. \mathcal{O} is Self-Compatible

Case: $\mathcal{M}(\mathcal{O})^c = \emptyset$, i.e. \mathcal{O} is Self-Compatible

 $\mathcal{M}(\mathcal{O})^c = \{e \in \mathcal{O} : \exists r, r' \in Res(e), a \in \mathcal{O}, \not\exists a' \in \mathcal{O} \text{ such that } \}$

Corollary (DHKNSVNY)

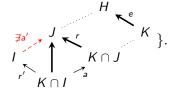
A transfer system $\mathcal O$ is self compatible, if, and only if, it is saturated, i.e.

Proof:

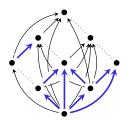
- If \mathcal{O} is saturated then $\mathcal{M}(\mathcal{O})^c = \emptyset$.
- Every saturation failure of \mathcal{O} is in $\mathcal{M}(\mathcal{O})^c = \emptyset$, thus \mathcal{O} is saturated.

A $C_{p^2q^2}$ -transfer system $\mathcal O$ and $\mathcal M(\mathcal O)$

 $\mathcal{M}(\mathcal{O})^c = \{e \in \mathcal{O} : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}, \not\exists a' \in \mathcal{O} \text{ such that }$



Can now compute non-trivial examples,



but complicated and slow, $O(r_{\mathcal{O}}^3)$ worst case with $r_{\mathcal{O}}=\#$ restrictions in \mathcal{O} .

A better way for a critical* case?

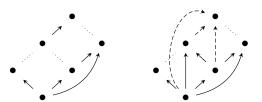
^{*:}Additive maps of G-spectra are typically encoded by this case.

A better way for a critical* case? Disklike Transfer Systems

Definition

We say G-transfer system \mathcal{O} is **disklike** when \mathcal{O} is generated by transfers/relations of the form $H \to G$.

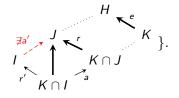
- Left, a non-disklike $C_{p^2,q}$ -transfer system.
- Right, a disklike $C_{p^2,q}$ -transfer system, its generators dashed.



*: Additive maps of *G*-spectra are typically encoded by this case.

An Observation

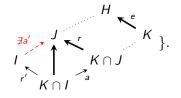
$$\mathcal{M}(\mathcal{O})^c = \{e \in \mathcal{O} : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}, \not\exists a' \in \mathcal{O} \text{ such that }$$



If an edge $e \in \mathcal{O}$ has no non-trivial restrictions then it is in $\mathcal{M}(\mathcal{O})$.

An Observation

$$\mathcal{M}(\mathcal{O})^c = \{e \in \mathcal{O} : \exists r, r' \in Res(e), a \in \mathcal{O}, \not\exists a' \in \mathcal{O} \text{ such that }$$



If an edge $e \in \mathcal{O}$ has no non-trivial restrictions then it is in $\mathcal{M}(\mathcal{O})$.

Corollary

Let (\mathcal{O},\leq) be the poset of transfers of \mathcal{O} ordered by restriction. Then,

$$\min_{<}\mathcal{O}\subseteq\mathcal{M}(\mathcal{O}).$$

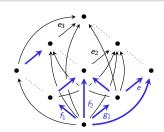
A Recursive Formula for $\mathcal{M}(\mathcal{O})$ in the Disklike Case

Theorem (DHKNSVNY)

Let \mathcal{O} be a **disklike** G-transfer system, then the maximal compatible transfer system can be written as the following set,

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r \prec e, r \in \mathcal{M}(\mathcal{O}) \text{ and } r \prec^{\mathsf{S}} e \},$$

where $r \prec e$ means e covers r in restriction poset (\mathcal{O}, \leq) , and $r \prec^{S} e$ means $r \prec e$ satisfies the compatibility condition.



Much simpler, $O(c_{\mathcal{O}})$ worst case with $c_{\mathcal{O}}:=\#$ cover relations in (\mathcal{O},\leq) .

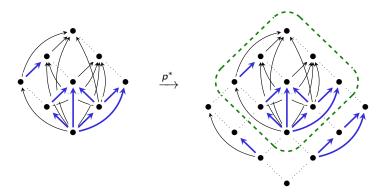
Inflation

A surjection of groups $p: G \twoheadrightarrow G/N$ where N is a normal subgroup induces a functor $p^*: Tr(G/N) \to Tr(G)$ [Rub21b].

Lemma

Inflation can be computed as $p^*(\mathcal{O}) = Res(p^{-1}(\mathcal{O}))$.

Let $p: C_{q^3r^3} woheadrightarrow C_{q^2r^2}$ be the projection with kernel C_{qr} , then one computes

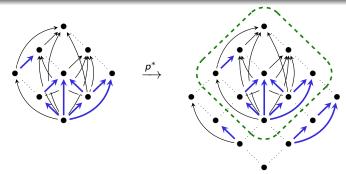


Properties Preserved by Inflation

Theorem (DHKNSVNY)

Given $p: G \twoheadrightarrow G/N$ and a pair of G/N-transfer systems $\mathcal{O}, \mathcal{O}_m$.

- **1** If \mathcal{O} is disklike, then so is $p^*\mathcal{O}$.
- ② If \mathcal{O} is saturated, then so is $p^*\mathcal{O}$.
- 3 If $(\mathcal{O}, \mathcal{O}_m)$ is compatible, then so is $(p^*\mathcal{O}, p^*\mathcal{O}_m)$.
- **4** If $(\mathcal{O}, \mathcal{O}_m)$ is maximally compatible, then so is $(p^*\mathcal{O}, p^*\mathcal{O}_m)$.

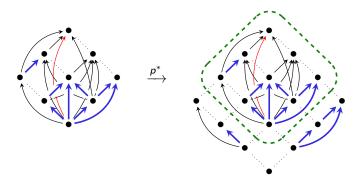


A Computational Consequence

Let \mathcal{O} be a disklike G-transfer system, then there is a unique minimal subgroup with a transfer to G, $N_{\mathcal{O}} \to G$, and $N_{\mathcal{O}}$ is normal.

Corollary (DHKNSVNY)

The computation of $\mathcal{M}(\mathcal{O})$ for any disklike G-transfer system \mathcal{O} can be reduced to the computation of $\mathcal{M}(\mathcal{O}')$ where \mathcal{O}' is a $G/N_{\mathcal{O}}$ -transfer systems with the transfer $1 \to G/N_{\mathcal{O}}$.



A Disklike Conjecture

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r \prec e, r \in \mathcal{M}(\mathcal{O}) \text{ and } r \prec^{S} e \},$$

Conjecture

Let $\mathcal O$ be a disklike G-transfer system, then the maximal compatible transfer system and its complement satisfy

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r < e, r <^{S} e \}, \text{ and}$$
$$\mathcal{M}(\mathcal{O})^{c} = \{ e \in \mathcal{O} \mid \exists r < e, r <^{F} e \}.$$

Experimentally, this holds for all disklike \emph{G} -transfer systems \emph{O} such that,

- **①** $Order(G) \leq 15$, and $e \rightarrow G \in \mathcal{O}$,
- ② $Order(G) \leq 63$, $e \rightarrow G \in \mathcal{O}$, and $Complexity(\mathcal{O}) \leq 2$, or
- **③** $G = \Sigma_n$ for $n \le 6$, and $Complexity(\mathcal{O}) \le 2$.

Clarifications and Difficulties

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r \prec e, r \in \mathcal{M}(\mathcal{O}) \text{ and } r \prec^{S} e \},$$

Conjecture

Let $\mathcal O$ be a disklike G-transfer system, then the maximal compatible transfer system and its complement satisfy

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r < e, r <^{S} e \}, \text{ and}$$
$$\mathcal{M}(\mathcal{O})^{c} = \{ e \in \mathcal{O} \mid \exists r < e, r <^{F} e \}.$$

Left, a non-disklike counter example. Right, a generic bounded lattice counter example, implying the need for group theoretic arguments if true.

Are there simpler alternate presentations?

Mentioned Sources I

- [BH15] Andrew J. Blumberg and Michael A. Hill. Operadic multiplications in equivariant spectra, norms, and transfers. *Adv. Math.*, 285:658–708, 2015.
- [BH22] Andrew J. Blumberg and Michael A. Hill. Bi-incomplete Tambara functors. In *Equivariant topology and derived algebra*, volume 474 of *London Math. Soc. Lecture Note Ser.*, pages 276–313. Cambridge Univ. Press, Cambridge, 2022.
- [BMO24] Scott Balchin, Ethan MacBrough, and Kyle Ormsby. Composition closed premodel structures and the Kreweras lattice. European J. Combin., 116:Paper No. 103879, 22, 2024.
 - [BP21] Peter Bonventre and Luís A. Pereira. Genuine equivariant operads. *Adv. Math.*, 381:Paper No. 107502, 133, 2021.
 - [Cha24] David Chan. Bi-incomplete Tambara functors as \mathcal{O} -commutative monoids. *Tunis. J. Math.*, 6(1):1–47, 2024.

Mentioned Sources II

- [GW18] Javier J. Gutiérrez and David White. Encoding equivariant commutativity via operads. *Algebr. Geom. Topol.*, 18(5):2919–2962, 2018.
- [Rub21a] Jonathan Rubin. Detecting Steiner and linear isometries operads. *Glasg. Math. J.*, 63(2):307–342, 2021.
- [Rub21b] Jonathan Rubin. Operadic lifts of the algebra of indexing systems. *J. Pure Appl. Algebra*, 225(12):Paper No. 106756, 35, 2021.

A Non-Disklike Counter Example

Theorem (DHKNSVNY)

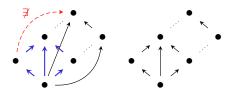
Let \mathcal{O} be a disklike G-transfer system, then the maximal compatible transfer system can be written as the following set,

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r \prec e, r \in \mathcal{M}(\mathcal{O}) \text{ and } r \prec^{S} e \},$$

where $r \prec e$ means e covers r in restriction poset (\mathcal{O}, \leq) , and $r \prec^{5} e$ means $r \prec e$ satisfies the compatibility condition.

Left: a non-disklike transfer system $\mathcal O$ and $\mathcal M(\mathcal O)$.

Right: the incorrect transfer system given by the theorem.



The Disklike Algorithm

Algorithm 1 Given a disklike G-transfer system \mathcal{O} computes $\mathcal{M}(\mathcal{O})$.

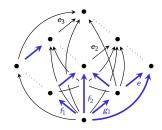
Initialize $\mathcal{M}(\mathcal{O}) := \min \mathcal{O}$ under the \leq order, and $Q := \mathcal{O} \setminus \mathcal{M}(\mathcal{O})$. while Q is non-empty **do**

Let m be a minimal element of Q under the \leq order.

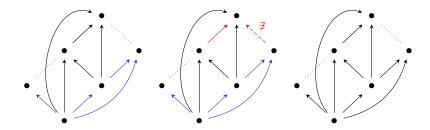
Delete [m] from Q.

if $\forall r \in \mathcal{O}$ such that $r \prec m$, we have that $r \in \mathcal{M}(\mathcal{O})$ and $r \prec^S m$ then Add [m] to $\mathcal{M}(\mathcal{O})$.

return $\mathcal{M}(\mathcal{O})$.



Saturated elements can exist in the interval $(\mathcal{M}(\mathcal{O}), \mathcal{O})$



Conjecture Example

Conjecture

Let $\mathcal O$ be a disklike G-transfer system, then the maximal compatible transfer system and its complement satisfy

$$\mathcal{M}(\mathcal{O}) = \{ e \in \mathcal{O} \mid \forall r < e, r <^{S} e \}, \text{ and}$$
$$\mathcal{M}(\mathcal{O})^{c} = \{ e \in \mathcal{O} \mid \exists r < e, r <^{F} e \}.$$

