Compatibility with Disk like Transfer Systems II JMM 2025

David DeMark, Mike Hill, Yigal Kamel, Nelson Niu, **Kurt Stoeckl***, Danika Van Niel and Guoqi Yan

Slides Part I

Slides Part II

Transfer Systems

Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subseteq . Then, \mathcal{O} is said to be a *G*-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

Transfer Systems

Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subseteq . Then, \mathcal{O} is said to be a *G*-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

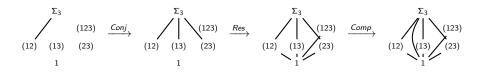
Theorem (A.2 of [Rub21])

Let R be a binary relation on Sub(G) refining \subseteq . Let T(R) denote the closure of R under

- conjugation, then
- restriction, and then
- composition.

Then T(R) is the smallest G-transfer system containing R.

Example



Theorem (A.2 of [Rub21])

Let R be a binary relation on Sub(G) refining \subseteq . Let T(R) denote the closure of R under

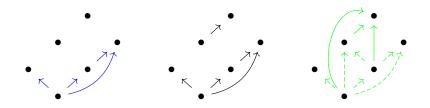
- conjugation, then
- restriction, and then
- composition.

Then T(R) is the smallest G-transfer system containing R.

Definition

We say *G*-transfer system \mathcal{O} is **disk like** when \mathcal{O} is generated by transfers/relations of the form $H \to G$.

- Left, a non-disk like $C_{p^2,q}$ -transfer system.
- Mid, a non-disk like $C_{p^2,q}$ -transfer system.
- Right, a disk like $C_{p^2,q}$ -transfer system, its generators in solid green.

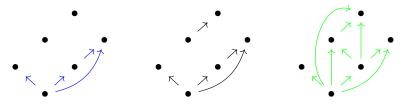


Saturated Transfer Systems

Definition

A transfer system ${\mathcal O}$ is ${\mbox{saturated}}$ if it satisfies the 2 out of 3 property.

- Left, a saturated $C_{p^2,q}$ -transfer system.
- Mid, a saturated $C_{p^2,q}$ -transfer system.
- Right, a non-saturated $C_{p^2,q}$ -transfer system.

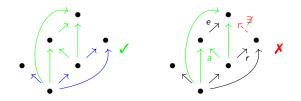


Compatible Transfer Systems

Definition ([Cha24, Definition 4.6])

Let \mathcal{O}_a and \mathcal{O}_m be a pair of *G*-transfer systems such that $\mathcal{O}_m \subseteq \mathcal{O}_a$. We say $(\mathcal{O}_a, \mathcal{O}_m)$ are **compatible** if we can complete all squares of the form

with $e, r \in \mathcal{O}_m$ and $a \in \mathcal{O}_a$.



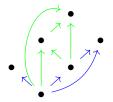
Maximal Compatible Transfer Systems

Proposition ([BH22])

If $(\mathcal{O}_a, \mathcal{O}_m)$ and $(\mathcal{O}_a, \mathcal{O}'_m)$ are both compatible, then $(\mathcal{O}_a, \mathcal{O}_m \vee \mathcal{O}'_m)$ is compatible.

Corollary

- For a fixed transfer system \mathcal{O}_{a} ,
 - there exists a maximal compatible transfer system \mathcal{O}_m , and
 - all other compatible transfers systems are sub-transfer systems of \mathcal{O}_m .



Why?

Work including [BH15, GW18, BBR21, BP21, Rub21, BMO24, Cha24], provides the correspondences

N_∞-operads Additive Transfers Multiplicative Norms Bi-incomplete Transfers and Norms Transfer Systems Disk Like Transfer Systems Saturated Transfer Systems Compatible Transfer Systems

Why?

Work including [BH15, GW18, BBR21, BP21, Rub21, BMO24, Cha24], provides the correspondences

N_∞-operads Additive Transfers Multiplicative Norms Bi-incomplete Transfers and Norms Transfer Systems Disk Like Transfer Systems Saturated Transfer Systems Compatible Transfer Systems

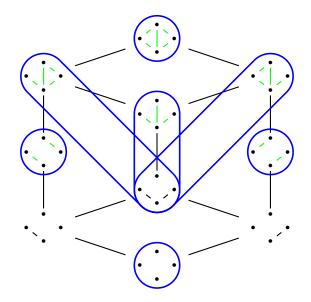
Corollary

For a fixed transfer system \mathcal{O}_a ,

- there exists a maximal compatible transfer system \mathcal{O}_m , and
- all other compatible transfers systems are sub-transfer systems of \mathcal{O}_m .

Thus identifying the maximal compatible transfer system identifies all bi-incomplete/compatible multiplicative norms for a fixed additive transfer.

Maximal Compatible Pairs of Disk like Transfers of $C_{p,q}$



How?

In Part 1 with David, we saw that

Proposition (DHKNSVNY)

The maximal compatible transfer \mathcal{O}_m of \mathcal{O}_a is always saturated.

Proposition (DHKNSVNY)

A transfer system \mathcal{O}_a is self compatible, if, and only if, it is saturated.

Is \mathcal{O}_m the 'maximal saturated sub-transfer system' of \mathcal{O}_a ?

In Part 1 with David, we saw that

Proposition (DHKNSVNY)

The maximal compatible transfer \mathcal{O}_m of \mathcal{O}_a is always saturated.

Proposition (DHKNSVNY)

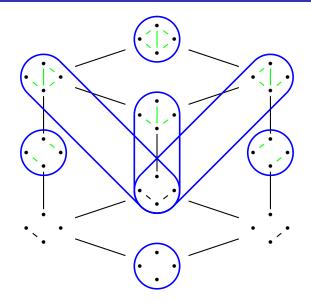
A transfer system \mathcal{O}_a is self compatible, if, and only if, it is saturated.

Is \mathcal{O}_m the 'maximal saturated sub-transfer system' of \mathcal{O}_a ?

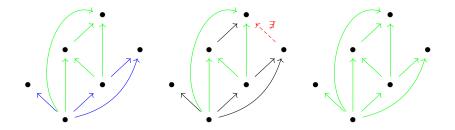
No!

- There can exist multiple incomparable saturated transfer systems smaller than \mathcal{O}_a .
- **2** Saturated elements can exist in the open interval $(\mathcal{O}_m, \mathcal{O}_a)$.

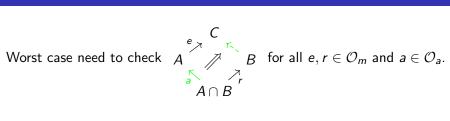
There can be multiple incomparable saturated transfer systems smaller than \mathcal{O}_a



Saturated elements can exist in the open interval $(\mathcal{O}_m, \mathcal{O}_a)$



Computing \mathcal{O}_m



Worst case need to check

$$A \xrightarrow{c} B \text{ for all } e, r \in \mathcal{O}_m \text{ and } a \in \mathcal{O}_a.$$

$$A \cap B$$

Lemma (DHKNSVNY)

If $\mathcal{O}_a = Comp(Res(Conj(B_a)))$ and $\mathcal{O}_m = Comp(Res(Conj(B_m)))$. Then, $(\mathcal{O}_a, \mathcal{O}_m)$ are compatible, if, and only if, $\mathcal{O}_m \subseteq \mathcal{O}_a$ and

$$A \xrightarrow{e \to C}_{a \to a} B \text{ for all } e, f \in Res(Conj(B_m)) \text{ and } a \in Res(Conj(B_a)).$$

Worst case need to check

$$A \xrightarrow{c} B \text{ for all } e, r \in \mathcal{O}_m \text{ and } a \in \mathcal{O}_a.$$

$$A \cap B$$

Lemma (DHKNSVNY)

If $\mathcal{O}_a = Comp(Res(Conj(B_a)))$ and $\mathcal{O}_m = Comp(Res(Conj(B_m)))$. Then, $(\mathcal{O}_a, \mathcal{O}_m)$ are compatible, if, and only if, $\mathcal{O}_m \subseteq \mathcal{O}_a$ and

$$A \xrightarrow[a]{r} A \cap B \xrightarrow{r} B \text{ for all } e, f \in \operatorname{Res}(\operatorname{Conj}(B_m)) \text{ and } a \in \operatorname{Res}(\operatorname{Conj}(B_a)).$$

Also: It is possible to not conjugate one of the sets of generators!

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

 $\mathcal{O}_{m}^{c} := \mathcal{O}_{a} \setminus \mathcal{O}_{m} = \{ e \in \mathcal{O}_{a} : \exists r, r' \in \operatorname{Res}(e), a \in \mathcal{O}_{a}, \not\exists a' \in \mathcal{O}_{a} \text{ such that}$

Idea:

- Delete the composite and top left factors of saturation failures of \mathcal{O}_a .
- Every occurrence of the pattern above deletes *e*, *r* and *c*.

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

 $\mathcal{O}_{m}^{c} := \mathcal{O}_{a} \setminus \mathcal{O}_{m} = \{ e \in \mathcal{O}_{a} : \exists r, r' \in \operatorname{Res}(e), a \in \mathcal{O}_{a}, \not\exists a' \in \mathcal{O}_{a} \text{ such that}$

Proof sketch:

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

 $\mathcal{O}_{m}^{c} := \mathcal{O}_{a} \setminus \mathcal{O}_{m} = \{ e \in \mathcal{O}_{a} : \exists r, r' \in \operatorname{Res}(e), a \in \mathcal{O}_{a}, \not\exists a' \in \mathcal{O}_{a} \text{ such that}$

Proof sketch:

• $e \in \mathcal{O}_m$ if, and only if, $(\mathcal{O}_a, \mathcal{T}(e))$ is compatible.

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

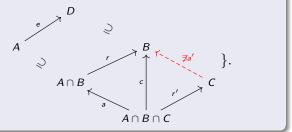
 $\mathcal{O}_{m}^{c} := \mathcal{O}_{a} \setminus \mathcal{O}_{m} = \{ e \in \mathcal{O}_{a} : \exists r, r' \in \operatorname{Res}(e), a \in \mathcal{O}_{a}, \not\exists a' \in \mathcal{O}_{a} \text{ such that}$

Proof sketch:

- $e \in \mathcal{O}_m$ if, and only if, $(\mathcal{O}_a, \mathcal{T}(e))$ is compatible.
- Then check the compatibility of $(\mathcal{O}_a, T(e))$ with prior lemma.

Case: $\mathcal{O}_m^c = \emptyset$

 $\mathcal{O}_m^c := \mathcal{O}_a \setminus \mathcal{O}_m = \{ e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \textit{ such that }$



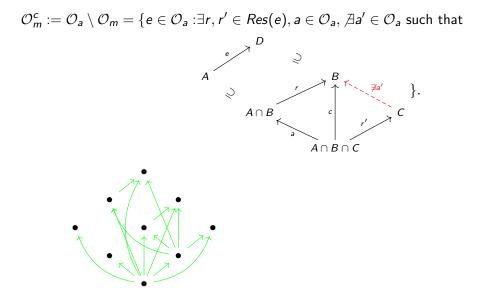
Proposition (DHKNSVNY)

A transfer system \mathcal{O}_a is self compatible, if, and only if, it is saturated.

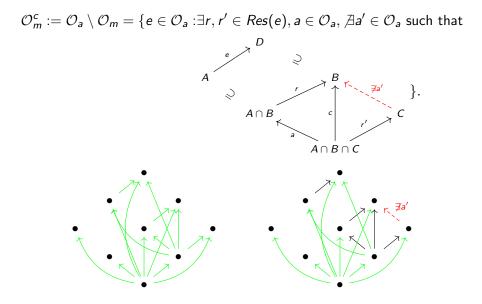
Proof:

- If \mathcal{O}_a is saturated then $\mathcal{O}_m^c = \emptyset$.
- Every saturation failure of \mathcal{O}_a is in $\mathcal{O}_m^c = \emptyset$, thus \mathcal{O}_a is saturated.

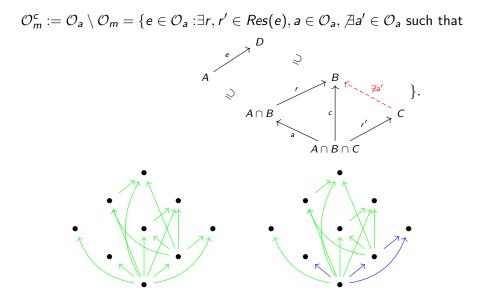
Example: Computing \mathcal{O}_m in $\overline{C_{p^2,q^2}}$ using the complement



Example: Computing \mathcal{O}_m in $\overline{C_{p^2,q^2}}$ using the complement



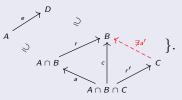
Example: Computing \mathcal{O}_m in C_{p^2,q^2} using the complement



A Key Consequence

Proposition (DHKNSVNY)

 $\mathcal{O}_m^c := \mathcal{O}_a \setminus \mathcal{O}_m = \{ e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \text{ such that }$



Theorem (DHKNSVY)

Let $\phi : G \to G'$ be a group hom. and $\mathcal{O}, \mathcal{O}_a, \mathcal{O}_m$ G'-transfer systems.

- If \mathcal{O} is disklike [resp. saturated], so is $\phi^* \mathcal{O}$.
- If (O_a, O_m) is compatible and O_m is saturated, then (\phi^*O_a, \phi^*O_m) is compatible.
- Solution If $(\mathcal{O}_a, \mathcal{O}_m)$ is maximally compatible, then so is $(\phi^* \mathcal{O}_a, \phi^* \mathcal{O}_m)$.

- How can we use the disk like assumption to aid in computing \mathcal{O}_m ?
- Can we use subset bounds on \mathcal{O}_m for faster computation?
- Can we compute all maximal compatible pairs for all disk like transfer systems of a fixed group G in a relatively efficient manner?
 - i.e. maybe it is 'hard' to compute \mathcal{O}_m for arbitrary \mathcal{O}_a ,
 - but we can induct to all $(\mathcal{O}_a, \mathcal{O}_m)$ from computing $(T(H \to G), \mathcal{O}_m)$?

Mentioned Sources I

[BBR21] Scott Balchin, David Barnes, and Constanze Roitzheim. N_{∞} -operads and associahedra. *Pacific J. Math.*, 315(2):285–304, 2021.

- [BH15] Andrew J. Blumberg and Michael A. Hill. Operadic multiplications in equivariant spectra, norms, and transfers. *Adv. Math.*, 285:658–708, 2015.
- [BH22] Andrew J. Blumberg and Michael A. Hill. Bi-incomplete Tambara functors. In *Equivariant topology and derived algebra*, volume 474 of *London Math. Soc. Lecture Note Ser.*, pages 276–313. Cambridge Univ. Press, Cambridge, 2022.
- [BMO24] Scott Balchin, Ethan MacBrough, and Kyle Ormsby. Composition closed premodel structures and the Kreweras lattice. *European J. Combin.*, 116:Paper No. 103879, 22, 2024.

[BP21] Peter Bonventre and Luís A. Pereira. Genuine equivariant operads. *Adv. Math.*, 381:Paper No. 107502, 133, 2021.

- [Cha24] David Chan. Bi-incomplete Tambara functors as *O*-commutative monoids. *Tunis. J. Math.*, 6(1):1–47, 2024.
- [GW18] Javier J. Gutiérrez and David White. Encoding equivariant commutativity via operads. *Algebr. Geom. Topol.*, 18(5):2919–2962, 2018.
- [Rub21] Jonathan Rubin. Detecting Steiner and linear isometries operads. *Glasg. Math. J.*, 63(2):307–342, 2021.