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Overview

Background

What are Operads?
What are Operadic Structures?
What is Operadic Homotopy Theory?

With an algebraic leaning...

Delve into the two papers comprising this Thesis

”Koszul Operads Governing Props and Wheeled Props”, and
”Diagonals of the Permutahedra”, joint with Bérénice Delcroix-Oger,
Guillaume Laplante-Anfossi and Vincent Pilaud.



Operads

Definition (Informal)

An operad P is a sequence of sets (P(n))n∈N with maps

P(n)⊠ P(k)
◦i−→ P(n + k − 1) for 1 ≤ i ≤ n,

which satisfy tree like associativity axioms.

Example

Let (E ,⊠) be a symmetric monoidal category, and let X be an object of E .
The endomorphism operad EndX is defined EndX (n):=HomE(X

⊠n,X ).

If (E ,⊠) := (Set,×) and X is a set, then

EndX (n) is the set of maps of sets X×n → X .

If (E ,⊠) := (VectK,⊗) and X is a Vector Space, then

EndX (n) is the set of linear transformations X⊗n → X .

The ◦i ’s are defined by the composition of functions.
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Operads

Definition (Informal)

An operad P is a sequence of sets (P(n))n∈N with maps

P(n)⊠ P(k)
◦i−→ P(n + k − 1) for 1 ≤ i ≤ n,

which satisfy tree like associativity axioms.

Example

The non-symmetric associative operad As in (Set,×),

As :=F ( )/⟨ r1= ⟩.

As(n) =The set of n-ary binary planar trees modulo r1,

with ◦i given by grafting ◦2 = .



Algebras Over Operads

Definition

Given operads P,Q in (E ,⊠), a morphism of operads θ : P → Q is a
sequence of maps θ := (θn : P(n)→ Q(n))n∈N such that for all α, β ∈ P

θ(α ◦i β) = θ(α) ◦i θ(β).

A P-algebra is a morphism of operads A : P → EndX .

Example

In (Set,×) an As-algebra A : As → EndX is a monoid on the set X .

Idea,

∧ ∈ As(2) is concretely realised as A(∧) : X × X → X , and

the relation
r1= forces A(∧) to be associative.
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Algebras Over Operads

Definition

Given operads P,Q in (E ,⊠), a morphism of operads θ : P → Q is a
sequence of maps θ := (θn : P(n)→ Q(n))n∈N such that for all α, β ∈ P

θ(α ◦i β) = θ(α) ◦i θ(β).

A P-algebra is a morphism of operads A : P → EndX .

Example

Let K be a field, and define KAs to be the K-linear span of As, i.e.

KAs(n) := K⟨As(n)⟩.

In (VectK,⊗) a KAs-algebra A : KAs → EndX is an associative algebra.



Operadic Structures

Definition (Informal)

Operadic structures model the composition of different types of functions
through different types of graphs. E.g.

Operads model the composition of functions with one output and
many inputs via trees.

Properads model the composition of functions with many inputs and
many outputs via connected directed acyclic graphs.

Props model the composition of functions with many inputs and
many outputs via (possibly disconnected) directed acyclic graphs.

They each admit generalised definitions of morphisms and algebras.
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Operadic Structures: Operads ⊊ Properads ⊊ Props
Trees ⊊ Conn. ⊊ Disconn.

An Example Element of Operadic Family Its Algebras
Generators Relations in Vect

r1=
As. Algebras

,
r1= ,

r2= ,
r3=

Bialgebras

, ,

, ,

r1, r2, r3 and,
r4= ,

r5= ,

r6=
r6= ,

r7=
r7= ,

r8=
r8=

Hopf Algebras



Can We Also Classify Structures with Non-Strict Relations?

Example (Path Spaces)

If X is a topological space, let P(X ) := HomTop([0, 1],X ) be the set of
continuous functions from the interval into X equipped with the
compact-open topology, and let µ : P(x)⊠ P(x)→ P(x) be defined by

µ(p1, p2) :=

{
p1(2t), 0 ≤ t ≤ 1/2

p2(2t − 1), 1/2 ≤ t ≤ 1

Then µ is only associative up to homotopy,

µ(µ(e, f ), g) =

1/4

1/4

1/2

...

1/2

1/4

1/4

= µ(e, µ(f , g))
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Operadic Homotopy Theory

Idea: Take an operadic structure, such as

As :=F ( )/⟨ r1= ⟩.

and weaken some subset of relations, such as r1, up to homotopy.

This results in an infinite tower of higher homotopies.

Two common problems in operadic homotopy theory,

1 Parse this tower of higher homotopies.

2 Extend known constructions to homotopy weakened generalisations.
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The Algebraic Setting

Definition (See for instance [DCV13])

An algebraic operad P is defined to be an operad in (dgVectK,⊗). Given
two algebraic operads M,P we say that M is a model for P if

there exists a morphism of operads f : M → P, and

f is both a quasi-isomorphism, and an epimorphism.

The model M is said to be minimal if M is quasi-free, i.e. M = (F (E ), d),
and d(E ) has a ’nice decomposition’.

A quadratic differential d(E )→ F (E )(2) is one such nice decomposition.

Proposition ([DCV13])

When a minimal model of an algebraic operad P exists, it is unique up to
isomorphism.

A minimal model is the best/smallest possible cofibrant replacement in the
model category of algebraic operads [Hin97].
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The A∞-Operad

Theorem ([Sta63], for a modern presentation see [LV12])

There exists a quadratic model for KAs, the A∞-operad.

A∞ := (F ((µn)n≥1), d).

where

µn is a n-ary operation also denoted µn = ... ,

µ1 encodes a differential,

µ2 = ∧ corresponds to the generator of As, and

for n ≥ 3 each µn encodes homotopies via their derivation ∂(µn).

∂( ) = − , ∂( ) = + − − − , ...

Thus A∞-algebras can thus be seen as homotopy associative algebras.
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The A∞-Operad

Definition

A convex polytope is the convex hull of a collection of points in Rn.

The associahedra K = (Kn)n∈N is a cell complex which can be realised as
convex polytope whose faces are in bijection with planar trees.



The A∞-Operad

Theorem ([Sta63], for a modern presentation see [LV12])

The associahedra K encodes the derivations of the A∞-operad.

∂( ) = − , ∂( ) = + − − − , ...



Koszul Operads, see for instance [LV12]

Definition

An algebraic operad P is Koszul, if, and only if, it has a quadratic model.

Many other characterisations and consequences!

The quadratic model has the explicit formula P∞ := Ω(P
¡
), and

Koszul duality provides elegant characterisations of P∞-algebras.

Any homotopy retract of a P-algebra is a P∞-algebra. For example
the homology of a P-algebra has an explicit P∞-structure.

It provides Ho(P-alg) ∼= Ho(∞-P∞-alg), and explicit maps to resolve
P-algebras into P∞-algebras, and rectify P∞-algebras into P-algebras.

The operad KAs is Koszul, as it has a quadratic model given by K.

A∞ = Ω((KAs)
¡
), as the associative operad is Koszul self-dual, an

A∞-algebra is a codifferential on a cofree coassociative coalgebra.

The homology of an associative algebra has Massey products.

Recovers classical bar construction, and classical rectification results.
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Koszul Operads Governing Operadic

Proposition (Many)

There exist (groupoid) coloured operads governing all operadic structures.

Theorem ([BM23], [KW23])

The groupoid coloured operads governing connected operadic structures

1 are Koszul,

(Proven using polytope based quadratic models)

2 are Koszul self-dual, and

3 have quadratic models governed by polytopes.

Theorem ([Sto24])

The groupoid coloured operads governing props and wheeled/traced props

1 are Koszul,

2 are not Koszul self-dual, and

3 do not have quadratic models governed by polytopes.
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How?

Define props.

Describe the coloured operad P whose algebras are props.

Reinterpret P as a groupoid coloured operad.

Show P admits a quadratic presentation P ∼= F (E )/⟨R⟩.
i.e. every term in R contains two generators of E , for example like

As := F ( )/⟨ r1= ⟩.

Show P is Koszul through the following general result.

Theorem ([Sto24])

Let P be a groupoid coloured operad such that the associated coloured
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

Will give a simple example of a groupoid coloured operad, and these maps
at end if time/interest!
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Props

Let C be a set of colours, and denote a sequence of colours c = (c1, ..., cn)

Definition (Introduced in [ML65], in one coloured dgVect case)

A C-coloured prop P is a strict symmetric monoidal category whose
objects are generated by the free monoid F (C).

Let P
(d
c

)
:= HomP(c1 ⊗ ...⊗ cn, d1 ⊗ ...⊗ dm), then

P is a symmetric bimodule, i.e. if α ∈ P
(d
c

)
then α ·

(
σ
τ

)
∈ P

(
σd
cτ

)
.

P has a vertical composition P
(c
b

)
⊗ P

(b
a

) ◦V−→ P
(c
a

)
.

P has a horizontal composition P
(d
c

)
⊗ P

(b
a

) ◦h−→ P
(d ,b
c,a

)
.

Can graphically visualise ◦V (f , g) as
f

g
, and ◦h(f , g) as f g
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The Operad Governing Props

Generalised Graphs ≈ Vertices + Flags/Half-Edges

Proposition (Specialisation of Lemma 14.2 [YJ15])

There exists an operad P in VectK whose algebras are C-props in VectK.

If Gr↑ is the set of strict isomorphism classes of directed, vertex labelled
generalised graphs, and with no directed cycles, then P has operations

P
( (d

c

)(d1
c1

)
, ...,

(dk
ck

)) := K⟨{γ ∈ Gr↑ : γ profile

(
d

c

)
, vi profile

(
d i

c i

)
}⟩

and a partial composition ◦i given by graph substitution.

v1

v2

∈ P
( (00)
(02),(

2
0)

)
,

v1 v2
∈ P

( (20)
(10),(

1
0)

)
,

v1

v2

◦2
v1 v2

=
v1

v2 v3
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Proposition (Specialisation of Lemma 14.2 [YJ15])
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Towards a Quadratic Presentation

We work with non-unital version of P, i.e. assume all graphs have at
least two vertices.

We re-interpret P as being a groupoid coloured operad, for instance

[

v1

v2

◦2
v1 v2

] = [

v1

v2

◦2
v1 v2

] =
v1

v2 v3

Without these assumptions the resulting presentation would have quadratic
unary relations. See [DV21] for case of operad governing operads.

*Thus the resulting notion of a P∞ algebra doesn’t relax unit or
equivariance axioms up to homotopy.
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The Free Full Nesting Operad

Proposition

Let E be K-linear span of graphs with two vertices, partitioned as follows.

E = K⟨{
v1

v2

,

v2

v1

, v1 v2 }⟩.

The free operad F (E ) is equivalent to ’fully nested graphs’ with ◦i given
by nested graph substitution.

v1

v2

◦2

v1 v2

v2

v1

=

v1

v3

v2

,

v1

v3

v2

◦1

v1 v2

=

v1 v2

v4

v3



A Quadratic Presentation of the Operad Governing Props

Proposition

The groupoid coloured operad P admits a quadratic presentation P ∼= F (E )/⟨R⟩.

The quadratic relations R are,

v1

v2

v3

=

v1

v2

v3

v1

v2

v3

=

v1

v2

v3

v1

v2 v3
=

v1

v2 v3
=

v1

v2 v3 v1

v2 v3

=
v1

v2 v3

=
v1

v2 v3

v1

v2 v3

=

v1

v2 v3

=

v1

v2 v3

v1

v2 v3

=
v1

v2 v3

=
v1

v2 v3



Proving Koszul via Rewriting Techniques

Theorem ([Sto24])

Let P be a groupoid coloured operad such that the associated coloured
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

Will outline why this is true at end of talk if time.

Idea: A straightforward combinatorial condition for being Koszul.

An operad with a quadratic presentation F (E )/⟨R⟩ is Koszul if we can
direct the relations R into a rewriting system on F (E ) which is

terminating, i.e. no infinite chain of rewrites, and

confluent, i.e. divergent rewrites eventually converge.



Proving Koszul via Rewriting Techniques

Theorem ([Sto24])

Let P be a groupoid coloured operad such that the associated coloured
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

Will outline why this is true at end of talk if time.

Idea: A straightforward combinatorial condition for being Koszul.

An operad with a quadratic presentation F (E )/⟨R⟩ is Koszul if we can
direct the relations R into a rewriting system on F (E ) which is

terminating, i.e. no infinite chain of rewrites, and

confluent, i.e. divergent rewrites eventually converge.



Proving Koszul via Rewriting Techniques

Directing As = F ( )/⟨ r1−→ ⟩, the edges of K correspond

to the resulting rewrite system, which is confluent and terminating.



Proving Koszul via Rewriting Techniques

The operad P admits such a confluent terminating rewrite system.

Every graph has a unique minimal tree monomial forming it.

Every non-minimal tree monomial can be rewritten to the minimal
tree via the directed relations of P.

v1

v4

v2

v3

v1

v3 v2

=
v1

v3 v2

←−−−−−−−−−−−−−−−−−

v1

v4

v2

v3

v1

v3

v2

=

v1

v3

v2

←−−−−−−−−−−

v1

v4

v2

v3



Polytopes and the Koszul Machine Parse Higher Structure

Theorem ([BM23], [KW23])

The groupoid coloured operads governing connected operadic structures

1 are Koszul,

2 are Koszul self-dual, and

3 have quadratic models governed by polytopes.

Theorem ([Sto24])

The groupoid coloured operads governing props and wheeled/traced props

1 are Koszul,

2 are not Koszul self-dual, and

3 do not have quadratic models governed by polytopes.

However the additional geometry of polytopes provides further data...



Tensor Products of Associative Algebras

Proposition

Let A and B be two associative algebras, then A⊗ B is also an associative
algebra, with product

µ(a⊗ a′, b ⊗ b′) := µA(a, a
′)⊗ µB(b, b

′)

What can we say about homotopy associative algebras?

Proposition

Let A and B be two A∞-algebras, then A⊗ B is also an A∞-algebra.

But how do we explicate all the higher products (µn)n∈N?
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Cellular Diagonals of Permutahedra

Joint with:

Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi and Vincent Pilaud.



How do we explicate the (µn)n∈N in A⊗ B?

Theorem ([SU04],[MS06],[MTTV21],[LA22],[LAM23],...)

Formulae for coherent cellular diagonals of

the associahedra, defines a tensor product of A∞-algebras,

the multiplihedra, defines a tensor product of A∞-morphisms, and

the operahedra, defines a tensor product of homotopy operads.

These are canonical projections of the permutahedra.

Theorem ([DOLAPS23])

There are exactly two geometric universal tensor products of:

A∞-algebras,

A∞-morphisms, and

(non-symmetric non-unital) homotopy operads.

In each case, both tensor products are ∞-isotopic.
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Cellular Diagonals

Definition

A convex polytope is the convex hull of a collection of points in Rn.

Definition

Let P be a convex polytope. The thin diagonal △ : P → P ×P is defined
by △(x) := (x , x). A cellular diagonal is a cellular approximation of △,
i.e.

its image is a union of cells of P × P, and

it approximates △ up to homotopy, in particular agreeing on vertices.

00

01

10

11

00

01

10

11

The thin and a cellular diagonal of the interval [0, 1].



of Permutahedra

Definition

The permutahedra Pn is the convex hull of the points

(σ(1), ..., σ(n)) ∈ Rn, σ ∈ Sn

23|1

2|3|1

2|13

2|1|3

12|3

3|12

3|1|2

13|2

1|3|2

1|23

3|2|1

123

1|2|3

34124312
4321 3421

3142

3241

3214

13421432

1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

Each face is in bijection with ordered [n]-partitions, and there exists an
isomorphism Θ which decomposes each face A1| . . . |Ak of the
permutahedron P|A1|+···+|Ak |−1 as a product P|A1|−1 × · · · × P|Ak |−1.
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Coherent Cellular Diagonals

There exists an isomorphism Θ which decomposes each face A1| . . . |Ak of
the permutahedron P|A1|+···+|Ak |−1 as a product P|A1|−1 × · · · × P|Ak |−1.

Definition

A cellular diagonal of the permutahedra △ is coherent if for every face
A1| . . . |Ak of the permutahedron P|A1|+···+|Ak |−1, the map Θ induces a
topological cellular isomorphism

△(A1)× . . .×△(Ak) ∼= △(A1| . . . |Ak) .

Theorem ([DOLAPS23])

There are exactly four coherent cellular diagonals of the permutahedra

1 the LA diagonal of [LA22],

2 the SU diagonal of [SU04],

and their −op orders. Moreover, their face posets are isomorphic lattices.
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The Image of the LA and SU Diagonals of P3
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Computing the Diagonals: A Useful Duality

Definition

A hyperplane arrangement is a finite set H of affine hyperplanes in Rd .

The normal cone of Pn is the braid arrangement Bn.

23|1
2|3|1

2|13

2|1|3
12|3

3|12
3|1|2

13|2

1|3|2
1|23

3|2|1

123

1|2|3

The hyperplanes, regions, and intersections of B3 are labelled via their
duality with P3 .



Computing the Diagonals: A Useful Duality

Idea: This duality extends to the diagonal.

2|13 13|2

2|13 13|2

12|312|3

23|1 23|1

1|23 1|23

3|123|12

12|3

12|3

23|1

23|1

1|23

1|23

3|12

3|12

2|13 13|2

2|13 13|2

A cellular diagonal of Pn is the dual of a hyperplane arrangement B2n
consisting of two generically translated copies of Bn.

The LA and SU diagonals are particular translations [LA22], [DOLAPS23].
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An Explicit Formula

Definition

A n-partition tree is a pair (σ, τ) of set partitions of [n] whose intersection
graph is a bipartite tree.

Example

An example and counter example,

13|24|57|6× 17|2|3|456

13

24

57

6

17

2

3

456

✓

13|24|57|6× 1|27|3|456

13

24

57

6

1

27

3

456

✗



Theorem ([DOLAPS23])

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ △SU .

2 the minimal path element left to right, then (σ, τ) ∈ △LA.

σ is Good:
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τ is Bad:
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Theorem ([DOLAPS23])

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ △SU .

2 the minimal path element left to right, then (σ, τ) ∈ △LA.
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Connecting Previously Disparate Formulae

Theorem ([DOLAPS23])

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ △SU .

2 the minimal path element left to right, then (σ, τ) ∈ △LA.

△SU ∋

13

24

57

6

3

17

456

2

t−→

13

24

57

6

3

17

456

2

r×r−−→

57

46

13

2

5

17

234

6

∈ △LA

The path formulae.

The geometric formulae of [LA22].

The shift formulae of [SU04].

The cubical formulae of [SU04].

The matrix formulae of [SU04].



Bℓ
n: ℓ-generically translated copies of the braid arrangement

Our paper also treats the ℓ-ary case using [Zas75], obtaining complete
enumerations, and combinatorial characterisations via rainbow
trees/forests, and generalised Prüfer codes.
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A Thought For The Future

Theorem ([BM23], [KW23])

The groupoid coloured operads governing connected operadic structures

1 are Koszul,

2 are Koszul self-dual, and

3 have quadratic models governed by polytopes.

Can we systemically construct and study the diagonals, and resulting
tensor products of all homotopy operadic structures?
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Groupoid Coloured Operads

Theorem ([Sto24])

Let P be a groupoid coloured operad such that the associated coloured
shuffle operad (P f )∗ admits a quadratic Groebner basis, then P is Koszul.

Let V be a groupoid, where Aut(v) is finite for all v ∈ Ob(V).

Example (4.2.14 of [Sto24])

Let V be the groupoid with three objects a, b, c and a single non-identity
isomorphism f : b → c , and its inverse f −1 : c → b. Let N be the
non-symmetric ob(V)-coloured module spanned by a single binary
operation

N = N

(
c

b, c

)
= ⟨ ⟩
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